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Billiards
Q =T2?\ UI|<<:1 Cy strictly convex scatterers

e Billiard flow : St : M — M, (q,v) e M =Q x St, [v| =1
Uniform motion within Q, elastic reflection at the
boundaries
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Billiards

Q =T2?\ UI|<<:1 Cy strictly convex scatterers

o Billiard map phase space: M = | J_; Mk

e (r,¢) € M, r: arclength along 9Cy, ¢ € [-7/2,7/2]
outgoing velocity angle

e invariant measure du = c cos¢drd¢
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Sinai billiards
Cy are C® smooth and disjoint (no corner points);
finite horizon: flight length uniformly bounded from above

e Billiard map is ergodic, K-mixing (Sinai '70)

e EDC:f,g : M — R Hélder continuous, [fdu = [gdu =0
let Cn(f,g) = pu(f -goT"), then |Cy(f,g)| < Ca" for
suitable C >0anda < 1

¢ Young '98 — tower construction with exponential tails,
e Chernov & Dolgopyat '06 — standard pairs

e CLT:letSf =f +foT +...+foT" 1, then

o0
St 2 N(0,0) where o = [f2dp+2 Y Ca(f,f).
Bunimovich & Sinai ‘81, Chernov 06, I\/rl1ellbourne '06.
e Billiard flow: F,G : M — R, C(F, G):
e stretched exponential bound, Chernov '07 (approximate
Markov partitions)
o faster than any polynomial, Melbourne '07 (Suspensions of
Young towers)
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Cusp map

C, and C, touch tangentially — unbounded
series of consecutive reflections in the vicinity
of the cusp
e Rehacek '95 ergodicity
e Machta '83 numerics and heuristic
reasoning for Cp(f,g) < 1/n
e Chernov & Markarian '07:
Cn(f,9) < C@
o Chernov & Zhang '08: Cn(f,g) < Ci
Not summable = non-standard limit law?
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Known results

oce

Cusp flow

long collision series near the cusp correspond
to bounded flow time — flow mixes faster?
Melbourne & B. '08

e Ci(F,G) decays faster than any
polynomial

e S' admits CLT (almost sure invariance
principle)
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Cusp superdiffusion constant

“Result” (C)

e Denote byr, € C; andr, € C, the two
points that make the cusp.

/2
o Letly = [ (f(r1,¢) +f(r2,9))p(¢)do
—7/2
nfrn with p(¢) = ——"— VoS¢
], veesads

o if Iy O then \/%W L. N(0,Dy)

Summary

where D = c¢*I? and c* is some numerical

constant.

e if I = 0 then S,f satisfies standard CLT.
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Remarks concerning the cusp flow

e if G: M — R Hoélder, then let
7(x)
g(x) = | G(x,t)dt,

0
e,
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Remarks concerning the cusp flow

e if G: M — R Hoélder, then let

7(x)
g(x)= [ G(x,t)dt,
0
" « and we have I; = 0 (as 7(x) = 0 for
X = (r17¢))1

e hence CLT and invariance principle are
reasonable.
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same phase space, samef: M — R
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CLT:
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Blow-up of the variance in tunnels

“Result” (T)
Denote be T. : M — M the billiard map
same phase space, samef: M — R
o for fixed ¢ > O this is a Sinai billiard, hence
CLT:

D .
. S_\/% —> N(0, D¢ ) with

e D; . = D¢[loge|(1+ 0(1))



Motivation

1. Brownian Brownian motion — Chernov & Dolgopyat '09

m < M (separation of time scales)
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Motivation

1. Brownian Brownian motion — Chernov & Dolgopyat '09

m < M (separation of time scales)
SDE for large particle:

dV = oq(f)dw

collisions of the heavy particle with
the wall?

How does the planar
diffusion depend on ¢?
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The first return map

Let M = M \ Mg where Mq is a fixed small nbd.
of the cusp.
o T :M — M first return map
e R : M — N unbounded return time
o f(x) = SR®£(Tkx) induced
observable
limit law for énf implies limit law for S,f
(eg. Gouézel '04)

D:
Dr = w(R)D; = 2
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Fast mixing of the first return map

Lemma (C1)

The map T : M — M is uniformly hyperbolic and it satisfies the
Growth Lemma (“Expansion prevalils fractioning”)
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e standard pairs can be coupled at an exponential rate
Hence: EDC for Holder observables



Known results New “results Skeletons of arguments Some words on the phenomena Summary

(o] lo}

Fast mixing of the first return map

Lemma (C1)

The map T : M — M is uniformly hyperbolic and it satisfies the
Growth Lemma (“Expansion prevails fractioning”)

so that
e Young tower with exponential tails can be constructed
e standard pairs can be coupled at an exponential rate
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Not for n = 0 as f is not Holder and not in L2
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Fast mixing of the first return map

Lemma (C1)
The map T : M — M is uniformly hyperbolic and it satisfies the
Growth Lemma (“Expansion prevails fractioning”)

so that
e Young tower with exponential tails can be constructed
e standard pairs can be coupled at an exponential rate
Hence: EDC for Holder observables

Lemma (C2)

- foTn) <Ce withC >0,a<1lforn>1

Not for n = 0 as f is not Holder and not in L2

Summarizing: the sequence f o T behaves almost like an i.i.d.
sequence
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e My = {x € M|R(x) = n} n-cell
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o flw, = nI(1+o(1))
w/2
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Blow-up of 2

e My = {x € M|R(x) = n} n-cell
* Ln =Uj<n M; low cells, Hn = Uj=n M; high cells

Lemma (C3)
o flu, = ni(1+o0(1)
w/2
(recall | =cy [ (f(r1, ) +f(r2,¢))\/cos(¢)d ¢)
—7/2

Summary

e i(Hn) = %(1 +0(1)) (here ¢y, c, are numerical constants)

o hence A(f2 - 1|,) = 2lognD;(1 + 0(1))
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Blow-up of 2

e My = {x € M|R(x) = n} n-cell
* Ln =Uj<n M; low cells, Hn = Uj=n M; high cells

Lemma (C3)
o flu, = ni(1+o0(1)
w/2
(recall | =cy [ (f(r1, ) +f(r2,¢))\/cos(¢)d ¢)
—7/2

* A(Hn) = (1 + 0(1)) (here cy, c; are numerical constants)
o hence A(f2 - 1|,) = 2lognD;(1 + 0(1))

iff o T" were i.i.d, it would belong to the non-standard domain
of attraction of the normal law
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The map T. : M — M satisfies the Growth
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First return map for tunnel

T.: M — M, Mg: same nbd. for any e,

M =M\ Mg

Return map T. : M — M and return time R,
dependon e

Lemma (T1)

The map T. : M — M satisfies the Growth
M. £ Lemma and EDC for Holder observables
B uniformly in ¢.

Lemma (T2)

. -f.oTh) <Ce ™ withC > 0,0 < 1
independent of ¢

Summary
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First return map for tunnel

T.: M — M, Mg: same nbd. for any e,

M =M\ Mg

Return map T. : M — M and return time R,
dependon e

Lemma (T1)

The map T. : M — M satisfies the Growth
Lemma and EDC for Holder observables
uniformly in e.

Lemma (T2)

. -f.oTh) <Ce ™ withC > 0,0 < 1
independent of ¢

Hence CLT for Syf. with variance
D; . = a(f2) + O(2):

Summary

correlations do not contribute to the main term.
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i(f2) = |log |D;(1 + o(1))
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Blow-up of {2
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M,

|
All these Lemmas require: detailed geometric analysis of the
cells My (measures, unstable and stable dimensions etc...)

Lemma (T3)
ii(f2) = loge|D;(1 + (1))
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Lemma (T3)
ii(f2) = loge|D;(1 + (1))

cells My (measures, unstable and stable dimensions etc...)

e For cusp, mostly (but not completely) done by Chernov &

Markarian
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Blow-up of {2

Lemma (T3)
ii(f2) = loge|D;(1 + (1))

All these Lemmas require: detailed geometric analysis of the

cells My (measures, unstable and stable dimensions etc...)

e For cusp, mostly (but not completely) done by Chernov &

Markarian

e For tunnel, requires new ideas & technical work (in
progress)

Summary
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Corner series

For simplicity assume that C; and C, are circles of radius 1.
Coordinates: « distance from cusp, v = 5 — ¢
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Corner series

For simplicity assume that C; and C, are circles of radius 1.
Coordinates: « distance from cusp, v = 5 — ¢

 while going down the cusp: « decreases, v: 0 — 7
 while coming out of the cusp: « increases, v: 5 —
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Corner series
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Equations of motion

/ Y —d =a+y
. - b =sina —sina/;
a=2-cosa—cosco’
and
a b =atan(a + 7)
sina’ — sina = _ 2—cosa’—cos o

tan(a+-)

e Throughout the corner series: o« < 1, a < ~;
e in a “large part” of the corner series: a < 7.
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Equations of motion

/ Y —d =a+y
. - b =sina —sina/;
a=2-cosa—cosco’
and
a b =atan(a + 7)
sina’ — sina = _ 2—cosa’—cos o

tan(a+-)

e Throughout the corner series: o« < 1, a < ~;
e in a “large part” of the corner series: a < 7.
2

" — v & 20 PP
v — v =2« o —a an()
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Flow approximation
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Flow approximation
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Flow approximation

v -y = 20a; o —ax _taﬁ(z'y) well approximated by
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Y = £Q4 o = —m

J = a?sin~ is first integral, so 4 = 2, /2=, dt = 2 \/Sjlnﬂ’dy

2
proportion of time between~y; andy, =< [ +/sin~d.

71

Recall It = ¢ 7rf/z (f(re, @) +f(rz, ¢))\/cos(¢)d ¢.
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length of the excursion R = cJ~3 JV/sinydy = cJ 2
0

hence 1(Hn) = u(R >n) = u(J < ) = p(a®y < %) = -

n
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Flow approximation for tunnel

y = 20 d——a2+€
7= e — tan(y)’

J = (a® +¢)sin v is first integral, s0 § = 2a = +2, /2= — <.

Fix some small §5. We distinguish three cases:

J > e/dp, J <dpe and J/e=x1.
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J=(a®+¢)siny Y =2a==+2 .L—a
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J > 5/(50:

e a > 0and o? > ¢ throughout the excursion
e cusp estimates apply, however R = CJ~1/2 < %
Contribution to the variance: a(f2- 1, , ) = D¢ |log |
Ve

Summary
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J
(o +¢)sin-y, A Q@ siny €
J < edo:
e v <10 < 7, however, a changes sign

e R=CJ/%? < % and fi(J < edp) = O(e)

O(1) contribution to the variance.

Summary
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The third case
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The third case

What is in between?

a = 0,7 =m/2is a hyperbolic fixed point (period two orbit)
Saddle case: if J = ¢, R can be arbitrary large, however, it is
dominated by the hyperbolic periodic orbit
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The third case

What is in between?

a = 0,7 =m/2is a hyperbolic fixed point (period two orbit)
Saddle case: if J = ¢, R can be arbitrary large, however, it is
dominated by the hyperbolic periodic orbit

O(1) contribution to the variance.
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Numerics and heuristic reasoning:
Ergodicity for large enough finite c
(Halasz, Sanders, Tahuilan, B.)
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