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Darwin’s tree of life
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A simple evolutionary model

Simulate the evolution changing randomly binary sequences
with a certain mutation rate per site and branching at Poisson
times
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Algorithms for Phylogenetic reconstruction

Distance based
Infer the tree using the distance matrix only
UPGMA
Neighbor Joining
Fitch
Weighbor
FASTME

Characters based
Compare different sequences character by character
Parsimony
MrBayes
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Additivity

Definition. A distance matrix is additive if there exists a tree on
which, for each pair of taxa X, Y, dX ,Y is the sum of the length of
the branches connecting X and Y
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Additivity

A B C D
A 0 5 12 13
B 5 0 13 14
C 12 13 0 9
D 13 14 9 0
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Four Point Condition

Definition.
A distance is additive iff for any four taxa A,B,C,D it is

dA,B + dC,D < dA,C + dB,D = dA,D + dB,C
or
dA,C + dB,D < dA,B + dC,D = dA,D + dB,C
or
dA,D + dB,C < dA,C + dB,D = dA,B + dC,D
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UPGMA
Neighbor Joining

Iterative Algorithms

UPGMA

I connect the two nearest taxa XY
I compute the distance between the new taxa and the other

taxa
I iterate till there remain only 3 taxa
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UPGMA
Neighbor Joining

Neighbor Joining

UPGMA works for ultrametric trees but not for additive trees in general
ultrametricity↔ constant evolutive speed

ultrametricity: for any three leaves a,b, c

da,b ≤ max(da,c ,db,c)
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Neighbor Joining

UPGMA works for ultrametric trees but not for additive trees in general
ultrametricity↔ constant evolutive speed

dA,C < dA,B
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Neighbor Joining

Define the matrix D as

DX ,Y = dx ,y − rX − rY

where

rX =
1

N − 2

∑

Y

dX ,Y

I connect the two taxa which minimizes DX ,Y

I compute D between the new taxa and the other taxa
I iterate till there remain only 3 taxa

Saitou and Nei 1987
Corinaldo 2010 Phylogenetic Reconstruction and Applications



The problem
Additivity

Iterative Algorithms
Global (Variational) Algorithms

UPGMA
Neighbor Joining

rA = rC =
5 + 3 + 6

2
= 7, rB = rD =

5 + 6 + 9
2

= 10

d =




0 5 3 6
5 0 6 9
3 6 0 5
6 9 5 0


 D =




0 - 12 -11 -11
-12 0 -11 -11
-11 -11 0 -12
-11 -11 -12 0



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UPGMA
Neighbor Joining

Properties of NJ

I Theorem (Saitou and Nei)
If the tree is additive then NJ reconstruct the correct tree.
Main ingredient: if X.Y minimizes D then X,Y is a cherry

I Stability Theorem (K. Atteson 1997) If the distance
estimates are at most half of the minimal edge length of
the tree away from their true value then Neighbor-Joining
will reconstruct the correct tree

I Neighbor Joining runs in O(N3) time
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Pauplin Formula
FASTME
Quartet Based Algorithms

Pauplin Formula

If a distance is additive than the total length of the
corresponding tree is given by

P =
∑

{X ,Y}
2−tX ,Y dX ,Y

where tX ,Y is the number of nodes between X and Y
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Pauplin Formula

L =
1
2

dA,B +
1
4

dA,C +
1
4

dA,D + ..... = 20

Y. Pauplin 2000
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Proof of Pauplin formula

Let L be the length of the tree: i.e.

L =
∑

k :k edge

lk

where we denoted with lk the length of the edge k .
The Pauplin expressione P can be written as

P =
∑

a,b 2−ta,bda,b

=
∑

a,b
∑

k∈Wa,b
2−ta,b lk

=
∑

k lk
∑

a,b 1k∈Wa,b2−ta,b
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where
∑

a,b denotes the sum on distinct pair of leaves a,b and
where we denoted with Wa,b the set of edges connecting the
leaf a with the leaf b.
Given an edge k , let us denote with k1 and k2 the two nodes
connected by k , and let us denote with T1 and T2 the two trees
which has roots in k1 and k2 , respectively.
We can notice that

∑

a,b

1k∈Wa,b2−ta,b =
∑

a∈T1

∑

b∈T2

2−ta,b

in fact all the pairs which contribute to the above sum have one
leaf in T1 and the other in T2.
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Now we can notice that for any a ∈ T1, and b ∈ T2 we can write

ta,b = za + zb

where za is the the number of branches in the path between a
and k1 and where zb is the number of branches in the path
between b and k2.

Corinaldo 2010 Phylogenetic Reconstruction and Applications
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Therefore

∑

a∈T1

∑

b∈T2

2−ta,b =
∑

a∈T1

∑

b∈T2

2−za−zb =
∑

a∈T1

2−za
∑

b∈T2

2−zb = 1·1 = 1

(1)
by Kraft equality.
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Kraft Equality

In a binary tree let zk be the depth of the leaf k . Then

∑

k

2−zk = 1

where zk is the depth of the keave k .
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Balanced Minimum Evolution Principle

If a distance is additive the right tree T is the one that minimizes

LT =
∑

{X ,Y}
2−tX ,Y dX ,Y

R. Desper, O.Gascuel 2003
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A BME Algorithm

Define an Energy:
E =

∑

a,b

2−ta,bda,b

Define an elementary move

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

I start from a reasonable tree (NJ tree)
I extract a link
I extract an elementary move
I accept the move if ∆E < 0

Corinaldo 2010 Phylogenetic Reconstruction and Applications



The problem
Additivity

Iterative Algorithms
Global (Variational) Algorithms

Pauplin Formula
FASTME
Quartet Based Algorithms

A BME Algorithm

Define an Energy:
E =

∑

a,b

2−ta,bda,b

Define an elementary move

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

I start from a reasonable tree (NJ tree)
I extract a link
I extract an elementary move
I accept the move if ∆E < 0

Corinaldo 2010 Phylogenetic Reconstruction and Applications



The problem
Additivity

Iterative Algorithms
Global (Variational) Algorithms

Pauplin Formula
FASTME
Quartet Based Algorithms

A BME Algorithm

Define an Energy:
E =

∑

a,b

2−ta,bda,b

Define an elementary move

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

I start from a reasonable tree (NJ tree)
I extract a link
I extract an elementary move
I accept the move if ∆E < 0

Corinaldo 2010 Phylogenetic Reconstruction and Applications



The problem
Additivity

Iterative Algorithms
Global (Variational) Algorithms

Pauplin Formula
FASTME
Quartet Based Algorithms

A BME Algorithm

Define an Energy:
E =

∑

a,b

2−ta,bda,b

Define an elementary move

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

I start from a reasonable tree (NJ tree)

I extract a link
I extract an elementary move
I accept the move if ∆E < 0

Corinaldo 2010 Phylogenetic Reconstruction and Applications



The problem
Additivity

Iterative Algorithms
Global (Variational) Algorithms

Pauplin Formula
FASTME
Quartet Based Algorithms

A BME Algorithm

Define an Energy:
E =

∑

a,b

2−ta,bda,b

Define an elementary move

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

I start from a reasonable tree (NJ tree)
I extract a link

I extract an elementary move
I accept the move if ∆E < 0

Corinaldo 2010 Phylogenetic Reconstruction and Applications



The problem
Additivity

Iterative Algorithms
Global (Variational) Algorithms

Pauplin Formula
FASTME
Quartet Based Algorithms

A BME Algorithm

Define an Energy:
E =

∑

a,b

2−ta,bda,b

Define an elementary move

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

I start from a reasonable tree (NJ tree)
I extract a link
I extract an elementary move

I accept the move if ∆E < 0

Corinaldo 2010 Phylogenetic Reconstruction and Applications



The problem
Additivity

Iterative Algorithms
Global (Variational) Algorithms

Pauplin Formula
FASTME
Quartet Based Algorithms

A BME Algorithm

Define an Energy:
E =

∑

a,b

2−ta,bda,b

Define an elementary move

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

I start from a reasonable tree (NJ tree)
I extract a link
I extract an elementary move
I accept the move if ∆E < 0

Corinaldo 2010 Phylogenetic Reconstruction and Applications



The problem
Additivity

Iterative Algorithms
Global (Variational) Algorithms

Pauplin Formula
FASTME
Quartet Based Algorithms

FASTME algorithm

∑

{X ,Y}
2−t(X ,Y )d(X ,Y )

The algorithm FASTME starts form a reasonable tree (NJ tree)
and then makes suitable elementary moves to minimize the
formula above

O. Gascuel and M. Steel 2006
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Quartet Based Algortihms
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Quartet Based Algortihms

strong four points condition
dA,B + dC,D < dA,C + dB,D = dA,D + dB,C
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Quartet Based Algortihms

soft four points condition
dA,B + dC,D < min(dA,C + dB,D,dA,D + dB,C)
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A Quarted Based Algorithms: Elementary Move

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

A

B C

D

!

" #

$

!

$ #

"A

D

B

C

!

# $

"A

C

B

D

for any a ∈ A,b ∈ B, c ∈ C,d ∈ D

define D1 = da,b + dc,d ,D2 = da,c + dc,d ,D3 = da,d + db,c

define quartet frustration as

f(a,b)(c,d) = max(0,D1 −min(D2,D3))
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A Quartet Based Algorithm

define configuration energy

E(A,B),(C,D) =
∑

a∈A,b∈B,c∈C,d∈D

2−n(a,α)−n(b,β)−n(c,γ)−n(d ,δ)f(a,b),(c,d)

∆E is the variation of a functional and the functional is the
Pauplin length LT
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Horizontal Transfer

An entire part of sequence A is copied in sequence C
As a result the distance matrix is the convex combination of two
additive matrices, then it is not an additive matrix
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A recall
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β

β = +∞

simulated annealing-like procedure:

(inverse temperature) increases with time

zero temperature procedure:

accept the move iff ∆E < 0

Stochastic local search algorithms (SLS)
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Why choosing 2.? It works better
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Practical drawback of SBiX: 
computational complexity O(N^4)

still good for large phylogenies (~ 1000 taxa)
but not for very large (>10000 taxa)

Why is this important?

e.g.  Protein interaction networks
       Virus Phylogeny
       Tree of life

In general, areas where the phylogeny
is important for prediction
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D(a, b) +
1
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c∈C

D(a, c) +
1

ND

�

d∈D

D(a, d)

for each leaf a we define a length 

the idea is filtering leaves’ contributions using this length
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A better approach is to use a smooth weight, e.g.

pa =
�
lAmin/la

�k
k > 0

then Mα,β =
�

a∈A,b∈B

D(a, b)wawbpapb

with    effective Pauplin’s weightsw

paIdentify the weight     with the probability of considering the leaf a 
when defining the subtree representative

Compute the effective Pauplin weights 
by using a suitable partition function 

Introduce a weight pa = f
�
lAmin/la

�

pa = θ
�
lAmin/la − lt

�
simple case
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P(α1,α2,α3)2

−σ(α1)−σ(α2)−σ(α3)

but the probability factorizes on each node!

drawback:         is not the variation of any functional ∆E

positive facts:
1.  It works 
2.  computational complexity O(N^2 log(N))
3.  general method to weigh taxa

weights depend on the chosen edge!

σ(αi) ∈ {0, 1}
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O dolce amor de caritate, pregote che me te lassi tenere, se te piace che da ti non 
me deggia mai partire. Lo dolce amore che me se è dato, madonna, puoi che me 

l'hai prestato, non me lo tollere questa fiata puoi che l'agio desiderato; puoi che ce 
so' venuta e che me te si' dato, non me voglio più partire. O dolce amore smesurato 
che te si' umiliato ed a questa misera te si dato. O dolce matre non me lo retollere, 

lo voglio tenere che me confuorti e che ma mea mente allustri. Puoi che m'hai 
reconsolata ed ame allustrata, no lo retollere se te piace. O dolce amore de grande 

confuorto che resusciti chi è muorto. O dolce amor de veritate che dai lume alli 
accecati, illuminame se te piace.
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Is a web experiment -game- aimed to provide 

a completely controlled and model-free phylogeny

Players (copysts) have few minutes to copy a given text. 
Texts evolve by:

•copying 
•degradation

human ability
parameters

O dolce amor de caritate, pregote che me te lassi tenere, se te piace che da ti non 
me deggia mai partire. Lo dolce amore che me se è dato, madonna, puoi che me 

l'hai prestato, non me lo tollere questa fiata puoi che l'agio desiderato; puoi che ce 
so' venuta e che me te si' dato, non me voglio più partire. O dolce amore smesurato 
che te si' umiliato ed a questa misera te si dato. O dolce matre non me lo retollere, 

lo voglio tenere che me confuorti e che ma mea mente allustri. Puoi che m'hai 
reconsolata ed ame allustrata, no lo retollere se te piace. O dolce amore de grande 

confuorto che resusciti chi è muorto. O dolce amor de veritate che dai lume alli 
accecati, illuminame se te piace.
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An application in linguistics:
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  We     wi   noi
  Ear     ir    oreky~o
  Eye     ei    oky~o

       Levenshtein (edit) distance: 
number of insertions, deletions or substitutions 

to go from a word to another  

distance between languages:
average Levenshtein distance
between homologous words

•First attempt: cognate words       distance 0/1
•phonological characters  
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No much difference in performances between reconstruction algorithms:
too much noise or too short and/or incomplete lists?

Comparison with Ethnologue (experts) classification
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An application in biology:
Influenza virus evolution



Extract information about the phylogenetic process
from phylogenetic tree shape

the supply of susceptibles. This feedback,
along with the effect of pathogen epidemic
dynamics on genetics in other systems, is
illustrated schematically in fig. S1A.

Partial immunity to influenza A virus
also generates strong fitness differences
among strains, leading to rapid strain turn-
over. Such continual immune selection de-
termines the shape of phylogenies of the
HA (Fig. 1E) and NA genes; these are
strongly temporal in structure with high
rates of lineage extinction, so that genetic
diversity at any time is limited. The central

trunk depicts the ancestry of the successful
lineages and has the highest rate of amino
acid replacement at key antigenic sites (9),
suggesting that immunological distance
from previous strains determines viral fit-
ness. Although substantial progress has
recently been made in integrating the
individual- and population-level dynamics of
influenza (5), the role of within-host dynam-
ics remains to be added to the picture. Influ-
enza B, and influenza A in other mammals,
generally shows more complex patterns of
antigenic drift (fig. S1B). In addition to anti-

genic drift, influenza pandemics can be
caused by novel HA and NA combinations
(antigenic shift). Aquatic birds are the natural
reservoirs of influenza A viruses and harbor a
variety of antigenic types, thereby providing
an environment in which new recombinant
subtypes can arise and transmit to mammals.

This phylodynamic category also includes
foot and mouth disease virus (FMDV), which
causes a highly infectious acute epidemic
disease of livestock. Primary infection or
vaccination gives imperfect protection
against other variants of the virus, and there is

Fig. 1. (A) Prevaccination measles dynamics: weekly case
reports for Leeds, UK (7). (B) Weekly reports of influenza-
like illness for France (44). (C) Annual diagnosed cases of
HIV in the United Kingdom (45). (D) Measles phylogeny: the
measles virus nucleocapsid gene [63 sequences, 1575 base
pairs (bp)]. (E) Influenza phylogeny: the human influenza A
virus (subtype H3N2) hemagglutinin (HA1) gene longitudi-
nally sampled over a period of 32 years (50 sequences, 1080
bp). (F) Dengue phylogeny: the dengue virus envelope gene
from all four serotypes (DENV-1 to DENV-4, 120 sequences,
1485 bp). (G) HIV-1 population phylogeny: the subtype B
envelope (E) gene sampled from different patients (39
sequences, 2979 bp). (H) HCV population phylogeny: the
virus genotype 1b E1E2 gene sampled from different pa-
tients (65 sequences, 1677 bp). (I) HIV-1 within-host phy-
logeny: the partial envelope (E) gene longitudinally sampled
from a single patient over 5.8 years [58 sequences, 627 bp;
patient 6 from (26)]. All sequences were collected from GenBank and trees were constructed with maximum likelihood in PAUP* (46 ). Horizontal
branch lengths are proportional to substitutions per site. Further details are available from the authors on request.
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that, for small trees, the topological properties differ from
the asymptotic properties of random models. The results
for the models investigated in Sections 2–4 are compared
in Section 5. There, we show that for large enough sys-
tem size the topologies of all trees, i.e. also of the trees
obtained from the explicit evolutionary models with se-
lection, seem to be compatible with trees obtained from
the class of ERM. The article is closed with a discussion
of the results (Sect. 6).

2 Topology of simple trees

Two useful quantities to evaluate the topology of trees
are the subtree size and the cumulative branch size. For
each node i in the tree, the subtree size Ai is defined as
the number of subtaxa diversifying from node i, includ-
ing itself. The cumulative branch size Ci is defined as
Ci =

∑
j Aj , where the sum runs over all nodes j di-

versifying from i, including itself. For a given tree, the
probability distributions of A and C may display power-
law tails, P (A) ∼ A−α and P (C) ∼ C−γ . Whenever there
is a one-to-one relationship between A and C values, as
in the cases we are going to discuss, it is of the scaling
type, C ∼ Aη, with η = (1 − α)/(1 − γ). The values of
the exponents characterize the degree of imbalance of a
tree. It has been shown that completely balanced trees
are asymptotically described by α = 2, γ = 2, and η = 1
– with a relevant logarithmic correction in P (C) that we
rederive below. The exponents characterizing completely
unbalanced trees are α = 0, γ = 1/2, and η = 2. An
interesting example deviating from these extreme behav-
iors is the case of efficient transportation networks, whose
topology is described by an exponent η = 3/2 that results
from an optimization principle [19]. The scaling of food
webs was first reported to yield a value for η between
1.13 and 1.16 [20]. Later, however, it was convincingly ar-
gued that the previous non-trivial value was a spurious
result due to food webs having only a few trophic levels,
and the exponent was corrected to η = 1 [21]. This is
a first word of caution towards the meaning of topologi-
cal quantities derived from small systems. Finally, critical
branching trees [24] display α = 3/2, and all supercriti-
cal branching trees follow α = 2 [25]. This latter class is
shared by the ERM, by Yule’s model [4] and also by the
coalescent [5]. This means that asymptotically the scaling
of these models is characterized by the exponent η = 1,
coinciding with the case of completely balanced trees. In
Sections 4 and 5, we will present simulations of the coa-
lescent model for comparison with the models introduced
below.

In the remaining of this section we derive the probabil-
ity distributions for completely balanced trees and com-
pletely unbalanced trees, and pay particular attention to
the non-trivial logarithmic corrections: these cause a con-
tinuous bending of the distribution P (C) that, as will be
shown in forthcoming sections, may lead to estimations of
the exponent η in small systems remarkably far from its
asymptotic value.

Fig. 1. Simple trees and quantities characterizing their topol-
ogy. (a) Completely unbalanced tree. (b) Completely balanced
tree. Each tree starts with n leaves (tips). The table shows the
level l in the tree, the number of nodes Nu/b(l) for the un-
balanced/balanced case and the corresponding values for the
subtree size Au/b(l) and the cumulative branch size Cu/b(l).

In the completely balanced and completely unbalanced
trees, Ai and Ci only take a limited possible number of
integer values (see Fig. 1). In order to quantitatively com-
pare these results with other examples in the literature,
we will assume a continuum approximation (as in [25]) to
estimate the probability density distributions P (A) and
P (C). We first calculate the number of nodes with each
value of A and C and subsequently normalize dividing by
the corresponding interval, ∆A and ∆C, between actually
represented values. In this section, n denotes the number
of tree tips.

We begin with the completely balanced tree. Let us
call Nb(l) the number of nodes at level l, and Ab(l)
and Cb(l) the value of the branch size and the cumu-
lative branch size, respectively, at that level. The inter-
val lengths separating two consecutive values are ∆Ab =
Ab(l + 1) − Ab(l) and ∆Cb = Cb(l + 1) − Cb(l). We apply
Cb(l) = 2Cb(l − 1) + Ab(l), with the condition Cb(1) = 1
to solve the recursion for Cb(l). Then, Nb(l) = n/2l−1,
Ab(l) = 2l − 1, Cb(l) = 1 + 2l(l − 1), ∆Ab = 2l, and
∆Cb = (l + 1)2l.

To obtain expressions in terms of Ab and Cb, the para-
metric variable l is eliminated and we transform Nb(l)
to probability distributions Pb(A) and Pb(C) by dividing
through the intervals ∆Ab and ∆Cb, respectively. This
yields

Pb(A) =
2n

(A + 1)2
. (1)

The parametric solution for Pb(C(l)) reads

Pb(C(l)) =
n

22l−1(l + 1)
, (2)

with

l =
W (z)

ln 2
+ 1, (3)

where z = (C − 1) ln 2/2, and with W (z) denoting the
Lambert W -function, defined as the function satisfying
z = W (z)eW (z). Thus, the distribution P (C) cannot be
obtained in an explicit analytical form. The Lambert W -
function admits the following asymptotic expansion for
z ≥ 3 [26],

W (z) = ln z − ln ln z +
ln ln z

ln z
+ O

[(
ln ln z

ln z

)]2

, (4)

Ai number of taxa diversifying from node i, including itself

Ci =
�

j

Aj
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Fig. 9. Cumulative branch size C as a function of the branch
size A for the four evolutionary models discussed in this work.
Parameters as in Figure 8. The dashed line has slope one, cor-
responding to the scaling exponent η for a completely balanced
tree in the asymptotic regime.

analytic results could only be derived for the fully sym-
metric case of CBT, our results support the view that the
dominant functional forms of the phylogenetic trees ob-
tained through the different models here studied asymp-
totically agree with the CBT.

The corresponding distributions P (C) are compared
in Figure 8b. There is a clear change in the scaling in this
case, since a visible bending affects the whole range of
C-values explored. At odds with other systems (as trans-
portation networks [19]), where the functional form of the
distribution of accumulated branch sizes seems to be dom-
inated by a pure power law, we have shown for the class
of CBT that P (C) ∝ (C2 ln C)−1. Furthermore, the loga-
rithmic correction seems to be shared by the phylogenetic
trees arising from all the models analyzed. As is clearly
seen in the figure, attemps to fit the distribution P (C)
with a pure power law may yield misleading results.

The complex scaling behavior of P (C) is also reflected
in the relationship between C and A, as shown in Figure 9.
The analytical results for CBT show that C ∝ A ln A,
again with a logarithmic term that causes a systematic de-
viation from a pure exponent η = 1 in all the range of tree
sizes that could be explored. Also here we observe that the
evolutionary models over a large range of tree sizes qual-
itatively agree with the results obtained for completely
balanced trees.

6 Discussion

Intrinsic evolutionary parameters and environmental con-
ditions determine the fate of species, their ability to sur-
vive and radiate, and the eventual size of their clades. In
this work we have addressed the question how these pro-
cesses modify the topology of phylogenetic trees. We have
used models of individual replicators evolving towards an

optimal target function (RNA model) or according to a
fitness function (IM model), to create phylogenetic trees
and subsequently investigate the scaling properties of their
topological quantities. We have shown that, in evolution-
ary models with different degrees of complexity, finite-size
effects result in quantitative changes in tree topology that
largely exceed those due to mutation and selection.

It is indeed remarkable that parameters as the selec-
tion pressure and the mutation rate play such a weak role
in the topological properties of phylogeny, while the size
of trees significantly affects the measured values of the
scaling exponents. If, as hypothesized (see, e.g. Ref. [16]),
mutation acts in the sense of erasing correlations as time
(i.e. tree size) increases, it can be expected that smaller
systems are more correlated, hence present a higher de-
gree of imbalance and as a consequence yield larger values
of η: they are by construction closer to imbalanced trees,
for which in the limit of complete imbalance η = 2. Larger
values of η for smaller trees is actually what we observe,
together with an important decrease of η for increasingly
large systems, a variation much larger than that due to
changes in the mutation rate.

In this work, we have considered large trees and fo-
cused on the scaling behavior of the subtree size A and
cumulative branch size C. The effects presented here do
not contradict findings for small trees where tree imbal-
ance is generic: evolutionary trees produced by a Moran’s
model are found to be only slightly more imbalanced than
neutral ones [23]. We emphasize again that the bending
of the distributions demonstrates that imbalance of small
trees is compatible with the ERM scaling.

We should mention that we have not studied the scal-
ing behavior of trees with persistent imbalances. There are
some models in the literature where branching probabili-
ties of species are assigned according to their position in
the tree (cf. on the size of the parent clade), thus caus-
ing persistent asymmetries or imbalances [14]. That class
of models has not yet been analyzed from the viewpoint
of the asymptotic scaling of C and A. This might be an
interesting objective for future investigations.

A way of distinguishing whether the non-trivial ex-
ponents measured in natural phylogenies genuinely reflect
non-trivial aspects of the evolutionary process itself or, on
the contrary, result from the small size of the trees con-
sidered, would be to check for the presence of correlations
between the measured values of α, γ, and η and the num-
ber of species in each tree. Even in the case that those
correlations would be weak or absent in real systems, we
believe that other quantities beyond the topological prop-
erties studied here are necessary to characterize the role
of different mechanisms shaping the tempo and phyloge-
netic structure of the evolutionary process. In the light of
our results, we can but agree with previous investigations
leading to the conclusion that the presence of universal
scaling exponents can be considered just a consequence of
the parent-child structure of a taxonomy [32,33].

The authors acknowledge conversations with E.A. Herrada, E.
Hernández-Garćıa and V.M. Egúıluz who draw our attention

P (A) ∝ A−α P (C) ∝ C−γ C(A) ∝ Aη, η =
1 − α
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that, for small trees, the topological properties differ from
the asymptotic properties of random models. The results
for the models investigated in Sections 2–4 are compared
in Section 5. There, we show that for large enough sys-
tem size the topologies of all trees, i.e. also of the trees
obtained from the explicit evolutionary models with se-
lection, seem to be compatible with trees obtained from
the class of ERM. The article is closed with a discussion
of the results (Sect. 6).

2 Topology of simple trees

Two useful quantities to evaluate the topology of trees
are the subtree size and the cumulative branch size. For
each node i in the tree, the subtree size Ai is defined as
the number of subtaxa diversifying from node i, includ-
ing itself. The cumulative branch size Ci is defined as
Ci =

∑
j Aj , where the sum runs over all nodes j di-

versifying from i, including itself. For a given tree, the
probability distributions of A and C may display power-
law tails, P (A) ∼ A−α and P (C) ∼ C−γ . Whenever there
is a one-to-one relationship between A and C values, as
in the cases we are going to discuss, it is of the scaling
type, C ∼ Aη, with η = (1 − α)/(1 − γ). The values of
the exponents characterize the degree of imbalance of a
tree. It has been shown that completely balanced trees
are asymptotically described by α = 2, γ = 2, and η = 1
– with a relevant logarithmic correction in P (C) that we
rederive below. The exponents characterizing completely
unbalanced trees are α = 0, γ = 1/2, and η = 2. An
interesting example deviating from these extreme behav-
iors is the case of efficient transportation networks, whose
topology is described by an exponent η = 3/2 that results
from an optimization principle [19]. The scaling of food
webs was first reported to yield a value for η between
1.13 and 1.16 [20]. Later, however, it was convincingly ar-
gued that the previous non-trivial value was a spurious
result due to food webs having only a few trophic levels,
and the exponent was corrected to η = 1 [21]. This is
a first word of caution towards the meaning of topologi-
cal quantities derived from small systems. Finally, critical
branching trees [24] display α = 3/2, and all supercriti-
cal branching trees follow α = 2 [25]. This latter class is
shared by the ERM, by Yule’s model [4] and also by the
coalescent [5]. This means that asymptotically the scaling
of these models is characterized by the exponent η = 1,
coinciding with the case of completely balanced trees. In
Sections 4 and 5, we will present simulations of the coa-
lescent model for comparison with the models introduced
below.

In the remaining of this section we derive the probabil-
ity distributions for completely balanced trees and com-
pletely unbalanced trees, and pay particular attention to
the non-trivial logarithmic corrections: these cause a con-
tinuous bending of the distribution P (C) that, as will be
shown in forthcoming sections, may lead to estimations of
the exponent η in small systems remarkably far from its
asymptotic value.

Fig. 1. Simple trees and quantities characterizing their topol-
ogy. (a) Completely unbalanced tree. (b) Completely balanced
tree. Each tree starts with n leaves (tips). The table shows the
level l in the tree, the number of nodes Nu/b(l) for the un-
balanced/balanced case and the corresponding values for the
subtree size Au/b(l) and the cumulative branch size Cu/b(l).

In the completely balanced and completely unbalanced
trees, Ai and Ci only take a limited possible number of
integer values (see Fig. 1). In order to quantitatively com-
pare these results with other examples in the literature,
we will assume a continuum approximation (as in [25]) to
estimate the probability density distributions P (A) and
P (C). We first calculate the number of nodes with each
value of A and C and subsequently normalize dividing by
the corresponding interval, ∆A and ∆C, between actually
represented values. In this section, n denotes the number
of tree tips.

We begin with the completely balanced tree. Let us
call Nb(l) the number of nodes at level l, and Ab(l)
and Cb(l) the value of the branch size and the cumu-
lative branch size, respectively, at that level. The inter-
val lengths separating two consecutive values are ∆Ab =
Ab(l + 1) − Ab(l) and ∆Cb = Cb(l + 1) − Cb(l). We apply
Cb(l) = 2Cb(l − 1) + Ab(l), with the condition Cb(1) = 1
to solve the recursion for Cb(l). Then, Nb(l) = n/2l−1,
Ab(l) = 2l − 1, Cb(l) = 1 + 2l(l − 1), ∆Ab = 2l, and
∆Cb = (l + 1)2l.

To obtain expressions in terms of Ab and Cb, the para-
metric variable l is eliminated and we transform Nb(l)
to probability distributions Pb(A) and Pb(C) by dividing
through the intervals ∆Ab and ∆Cb, respectively. This
yields

Pb(A) =
2n

(A + 1)2
. (1)

The parametric solution for Pb(C(l)) reads

Pb(C(l)) =
n

22l−1(l + 1)
, (2)

with

l =
W (z)

ln 2
+ 1, (3)

where z = (C − 1) ln 2/2, and with W (z) denoting the
Lambert W -function, defined as the function satisfying
z = W (z)eW (z). Thus, the distribution P (C) cannot be
obtained in an explicit analytical form. The Lambert W -
function admits the following asymptotic expansion for
z ≥ 3 [26],

W (z) = ln z − ln ln z +
ln ln z

ln z
+ O

[(
ln ln z

ln z

)]2

, (4)
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Abstract. The extent to which evolutionary processes affect the shape of phylogenetic trees is an important
open question. Analyses of small trees seem to detect non-trivial asymmetries which are usually ascribed
to the presence of correlations in speciation rates. Many models used to construct phylogenetic trees have
an algorithmic nature and are rarely biologically grounded. In this article, we analyze the topological
properties of phylogenetic trees generated by different evolutionary models (populations of RNA sequences
and a simple model with inheritance and mutation) and compare them with the trees produced by known
uncorrelated models as the backward coalescent, paying special attention to large trees. Our results demon-
strate that evolutionary parameters as mutation rate or selection pressure have a weak influence on the
scaling behavior of the trees, while the size of phylogenies strongly affects measured scaling exponents.
Within statistical errors, the topological properties of phylogenies generated by evolutionary models are
compatible with those measured in balanced, uncorrelated trees.

PACS. 87.23.Kg Dynamics of evolution – 89.75.Hc Networks and genealogical trees

1 Introduction

Ever since the first observations on the diversity of living
beings, there has been an interest in classifying them ac-
cording to their similarities. As early as in the mid XV cen-
tury, taxonomy jumped from folk inventories to global
classification. By the end of the XVIII century, the taxo-
nomic classification included about ten thousand species
of plants and more than thousand different genera. The
next level in the taxonomy, that of families, was also in-
corporated towards the end of that same century [1]. Still,
the idea of a common origin for living beings was absent
from that classification. It was only through the onset of
an evolutionary theory, and especially after the publica-
tion of The Origin by Charles Darwin [2], that the nowa-
days iconic image of a tree of life relating extant organisms
to extinct common ancestors began to take form.

It was soon observed that most taxonomic groups
are species-poor, and only a few are composed of many
species, this pattern repeating as one climbs up taxonomic
levels [3]. The resulting hierarchical classification could, in
the light of evolution, be viewed as a branching process
in time, thus completely changing the interpretation and
meaning of the data. The first model aimed at representing
the common origin of species and their uneven distribution
within the tree was that of Yule [4], which already yielded
a remarkable agreement with empirical data. Yule’s model

a e-mail: stichm@inta.es

is a neutral model of evolution that starts with a single
species in the tree. The probability that a species splits
into two is uniform in the tree and does not depend on
time. The statistical properties of the genealogy so con-
structed are identical to those of the equal-rates Markov
(ERM) model and of neutral coalescent models of phylo-
genetic trees [5].

The model proposed by Yule is a first instance of
assimilating taxonomy to phylogeny. Actually, whether
taxonomic classification is consistent with the actual phy-
logeny of species is a non-trivial question: while the former
results from a largely artificial division, the latter explic-
itly follows the evolutionary history of a clade, and con-
tains no visible division into groups. The robustness of
statistical patterns in taxonomy, as obtained from differ-
ent groups of animals and plants and at different taxo-
nomic levels, seems to support the hypothesis that statis-
tical properties of taxonomy do not depend on the details
of the classification and contain reliable information about
the patterns of biological diversity [6]. Still, it remains to
be proved that the properties of taxonomy at the species
level is equivalent to the statistical properties of higher-
order taxa [7], although analyses of the topology of large
trees seem to support that mechanisms driving biological
diversification are independent of the taxonomic level [8].

Phylogenetic trees are nowadays routinely recon-
structed by means of genomic data [9]. Molecular informa-
tion on extant organisms (parts of genomes, single genes,
mitochondrial RNA, proteins or even metabolic networks)
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More general open questions:

taking into account deviations from additivity 
in algorithms (horizontal transfer)

exploiting additional information
(internal nodes)

modeling evolutionary processes leading to 
real phylogenies
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