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The problem

Phylogenetic Tree of Life
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The problem

Darwin’s tree of life
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The problem
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The problem

A simple evolutionary model
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The problem

A simple evolutionary model

Simulate the evolution changing randomly binary sequences
with a certain mutation rate per site and branching at Poisson
times
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The problem

A simple evolutionary model

Simulate the evolution changing randomly binary sequences
with a certain mutation rate per site and branching at Poisson
times
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Algorithms for Phylogenetic reconstruction
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Algorithms for Phylogenetic reconstruction
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The problem

Algorithms for Phylogenetic reconstruction

Distance based

Infer the tree using the distance matrix only
UPGMA
Neighbor Joining
Fitch
Weighbor
FASTME

Characters based
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The problem

Algorithms for Phylogenetic reconstruction

Distance based

Infer the tree using the distance matrix only
UPGMA
Neighbor Joining
Fitch
Weighbor
FASTME

Characters based
Compare different sequences character by character
Parsimony
MrBayes
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Additivity

Additivity

Definition. A distance matrix is additive if there exists a tree on
which, for each pair of taxa X, Y, dx y is the sum of the length of
the branches connecting X and Y
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Additivity

Additivity

D

A B C D
A 0 5 12 13
B 5 0 13 14
c 12 13 0 9
D 13 14 9 O
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Additivity

Four Point Condition

Definition.
A distance is additive iff for any four taxa A,B,C,D it is

dag+decp<dac+dsp=dap+dsc
or
dac+dpp <dap+dcp=dap+dsc
or
dap+dec <dac+dep=dag+dcp
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Additivity

Four Point Condition

dag+dcp <dac+dpp=dap+dsc
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UPGMA
lterative Algorithms Neighbor Joining

lterative Algorithms

UPGMA

» connect the two nearest taxa XY

» compute the distance between the new taxa and the other
taxa

» iterate till there remain only 3 taxa
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UPGMA
Iterative Algorithms Neighbor Joining

Neighbor Joining

UPGMA works for ultrametric trees but not for additive trees in general
ultrametricity <+ constant evolutive speed

Root
1

i

A

ultrametricity: for any three leaves a, b, ¢

da7b < max(dac, db7c)
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UPGMA
Iterative Algorithms Neighbor Joining

Neighbor Joining

UPGMA works for ultrametric trees but not for additive trees in general
ultrametricity <+ constant evolutive speed

dac < dag
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UPGMA
Iterative Algorithms Neighbor Joining

Neighbor Joining

Define the matrix D as

Dxy=dxy —rx—ry
where

r —LZd

X=N "3 s Xy

» connect the two taxa which minimizes Dy y
» compute D between the new taxa and the other taxa
» iterate till there remain only 3 taxa

Saitou and Nei 1987



UPGMA

Iterative Algorithms Neighbor Joining

. _54649 4
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UPGMA
Iterative Algorithms Neighbor Joining

Properties of NJ

» Theorem (Saitou and Nei)
If the tree is additive then NJ reconstruct the correct tree.
Main ingredient: if X.Y minimizes D then X,Y is a cherry
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UPGMA
Iterative Algorithms Neighbor Joining

Properties of NJ

» Theorem (Saitou and Nei)
If the tree is additive then NJ reconstruct the correct tree.
Main ingredient: if X.Y minimizes D then X,Y is a cherry

» Stability Theorem (K. Atteson 1997) If the distance
estimates are at most half of the minimal edge length of
the tree away from their true value then Neighbor-Joining
will reconstruct the correct tree
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UPGMA
Iterative Algorithms Neighbor Joining

Properties of NJ

» Theorem (Saitou and Nei)
If the tree is additive then NJ reconstruct the correct tree.
Main ingredient: if X.Y minimizes D then X,Y is a cherry
» Stability Theorem (K. Atteson 1997) If the distance
estimates are at most half of the minimal edge length of
the tree away from their true value then Neighbor-Joining
will reconstruct the correct tree

» Neighbor Joining runs in O(N?3) time
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Pauplin Formula
FASTME

Global (Variational) Algorithms SR EEEEs] LR ne

Pauplin Formula

If a distance is additive than the total length of the
corresponding tree is given by

P = Z 2*fx,de7Y
{X,Y}

where ty y is the number of nodes between X and Y
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

Pauplin Formula

1 1
[ =
dAB+4

> dAC+

D

Y. Pauplin 2000
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Pauplin Formula
FASTME

Global (Variational) Algorithms SR EEEEs] LR ne

Proof of Pauplin formula

Let L be the length of the tree: i.e.

L:Zlk

k:k edge

where we denoted with /, the length of the edge k.
The Pauplin expressione P can be written as

P= Za,b zita’bdéhb
= DabXkeWsp 27 faby
= kX ap Thew, ,2 =
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

where }_, , denotes the sum on distinct pair of leaves a, b and
where we denoted with W, , the set of edges connecting the
leaf a with the leaf b.

Given an edge k, let us denote with ky and k» the two nodes
connected by k, and let us denote with Ty and T, the two trees
which has roots in k; and k» , respectively.

We can notice that

Z 1kEWa’b2*ta,b — Z Z o~ tap
a,b

acTy beTo

in fact all the pairs which contribute to the above sum have one
leaf in Ty and the otherin T>.
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

Now we can notice that for any a € Ty, and b € T, we can write
fap = Za+ 2p

where z; is the the number of branches in the path between a
and ky and where z, is the number of branches in the path
between b and k.
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

Therefore

DY o= "N o=y 2Ny 2 =11 =1

acTy beT, acTy beT, aceTy beT,
(1)

by Kraft equality.
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Pauplin Formula
FASTME

Global (Variational) Algorithms CGuarietiBas edlAlaolitims

Kraft Equality

In a binary tree let zx be the depth of the leaf k. Then

D 2k =1
k

1/2

1/4

1/8 1/8
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Pauplin Formula
FASTME

Global (Variational) Algorithms CGuarietiBas edlAlaolitims

Balanced Minimum Evolution Principle

If a distance is additive the right tree T is the one that minimizes

Lr= ) 2%vdyy
{X,Y}

R. Desper, O.Gascuel 2003
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Pauplin Formula
FASTME

Global (Variational) Algorithms SR EEEEs] LR ne

A BME Algorithm
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Pauplin Formula
FASTME

Global (Variational) Algorithms CGuarietiBas edlAlaolitims

A BME Algorithm

Define an Energy:

E == Zz_ta’bdaJQ
a,b
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

A BME Algorithm

Define an Energy:

E - Zz_ta’bdaJQ
a,b

Define an elementary move
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

A BME Algorithm

Define an Energy:

E - 22_ta’bda7b
a,b

Define an elementary move

» start from a reasonable tree (NJ tree)
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

A BME Algorithm

Define an Energy:

E - 22_ta’bda7b
a,b

Define an elementary move

» start from a reasonable tree (NJ tree)
» extract a link
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

A BME Algorithm

Define an Energy:

E - 22_ta’bda7b
a,b

Define an elementary move

» start from a reasonable tree (NJ tree)
» extract a link
» extract an elementary move
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

A BME Algorithm

Define an Energy:

E - 22_ta’bda7b
a,b

Define an elementary move

» start from a reasonable tree (NJ tree)
» extract a link

» extract an elementary move

» accept the move if AE < 0
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Pauplin Formula
FASTME

Global (Variational) Algorithms CGuarietiBas edlAlaolitims

FASTME algorithm

Y 27X d(X, )

{x.v}
The algorithm FASTME starts form a reasonable tree (NJ tree)
and then makes suitable elementary moves to minimize the

formula above
O. Gascuel and M. Steel 2006
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Pauplin Formula
FASTME

Global (Variational) Algorithms GuanicibassdAlgeinnS

Quartet Based Algortihms
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Pauplin Formula
FASTME

Global (Variational) Algorithms GuanicibassdAlgeinnS

Quartet Based Algortihms

\
\
\
\
\
\
\
\

strong four points condition
dag+dcp <dac+dsp=0dap+dpc
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Pauplin Formula
FASTME

Global (Variational) Algorithms GuanicibassdAlgeinnS

Quartet Based Algortihms

\
\
\
\
\
\
\
\

soft four points condition
dag+ dc.p < min(dac + d,p,dap + dgc)
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Pauplin Formula
FASTME

Global (Variational) Algorithms QhartetiBasediAldentms

A Quarted Based Algorithms: Elementary Move
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Pauplin Formula
FASTME
Quartet Based Algorithms

Global (Variational) Algorithms

A Quarted Based Algorithms: Elementary Move

(B 0
Prege
[Aa 0
T~

foranyae AAbe B,ce C,de D
define Dy = dap + de g, D2 = dac + g, D3 = dag + dbc
define quartet frustration as

fiab)(c,a) = max(0, Dy — min(Da, D3))



Pauplin Formula
FASTME

Global (Variational) Algorithms GuanicibassdAlgeinnS

A Quartet Based Algorithm

define configuration energy

Z 27n(a,a)7“([),,3)7!7(0,7)7[7((],6)f

EaB)cp) = (a.b),(c.d)
acA,beB,ceC,deD
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Pauplin Formula
FASTME

Global (Variational) Algorithms GuanicibassdAlgeinnS

A Quartet Based Algorithm

define configuration energy

E(A,B),(C,D) _ Z 2—n(a,a)—n(b,ﬂ)fn(c,w)—n(d,S)f(a’b)’(ad)
acA,beB,ceC,deD

AE is the variation of a functional and the functional is the
Pauplin length Lt
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Pauplin Formula
FASTME

Global (Variational) Algorithms QhartetiBasediAldentms

Horizontal Transfer

An entire part of sequence A is copied in sequence C
As a result the distance matrix is the convex combination of two
additive matrices, then it is not an additive matrix

A
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Outline

*Algorithms
*An application in linguistics

*A biology related problem



A recall

Soft four points condition

b
Dl - da,b + dc,d; D2 - da,c + dc,da D3 - da,d + db,c

D1 = min(Dl, Dg, D3)

X -



A recall

Soft four points condition e

b
Dl - da,b + dc,d; D2 - da,c + dc,d; D3 - da,d + db,c

D1 = l’IliIl(Dl, Dg, D3)

Pauplin’s formula

Lp = Z 2_t(a’b)D(a> b) 0. Gascuel and M. Steel 2006

a<b 1
1= Sld(e, ) + d(g.h) + dli.f) + df, )]

Ly=gld(e, vd(g. Wi+ ld(e.g)rdle.h+d (£ 0+d(f 0] Lp=l



Stochastic local search algorithms (SLS)

/:>_<: elementary moves
',4!«» (NN
" C b -'4




Stochastic local search algorithms (SLS)

eIementary moyves
(NNI)

|. extract a link
2. extract an elementary move
3. accept the move with probability e

—BAE



Stochastic local search algorithms (SLS)

Br<_B|

~<|  elementary moves

2. extract an elementary move
3. accept the move with probability €

. extract a link

_BAE

simulated annealing-like procedure:
5 (inverse temperature) increases with time
zero temperature procedure:

0 = 400 <« acceptthe moveiff AFE <0



Local (configurational) energy definition
based on the soft four points condition



Local (configurational) energy definition
based on the soft four points condition

P ¢ 4
for any

' .4
define i ' e hp

D, = da,b + dc,da Dy = da,c + dc,da D3 = da,d + db,c




Local (configurational) energy definition
based on the soft four points condition

for any s p
AbeB c,deD 7 N
a E 9 E 7c E 9 E : » .4
define ' ' e o]
Dlzda,b+dc,daD2 dac+dcdaD3_ ad+dbc

soft four points condition

Dy = min(Dy, Dy, D3) & ..... &




Local (configurational) energy definition
based on the soft four points condition

for any S L : j
acAbe B,ce C,de D < 2 i
define ' ' b' ~~<§
Dy =dagp+deg, D2 =dg,c+dea, D3 =dgq+dp.
soft four points condition
Dy =min(Dy, D2, D3) TN
quartet frustration

f(a,b)(c,d) = mam(O, D1 - min(Dg, Dg))




Local (configurational) energy definition
based on the soft four points condition

‘* 43
D, = da,b + dc,da Dy = da,c + dc,da D3 = da,d + db,c

soft four points condition

d
D1 = min(Dl, DQ, D3) X
quartet frustration <
fap)(e,a) = max(0, Dy — min(Dy, D3)) °

l. E(A,B),(C.D) - Z 27”({170[)7n(bﬁ)7n<cn)7n(d’6>,f(tl,l)),((t,(l)
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for any

define



Local (configurational) energy definition
based on the soft four points condition

‘* 43
D, = da,b + dc,da Dy = da,c + dc,da D3 = da,d + db,c

soft four points condition

d
D1 = min(Dl, DQ, D3) X
quartet frustration <
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. E(a.p).c.0) = Z Q—n(a,a)—n(b,ﬁ)—n(Cﬁ)—n(d75)f(a’b)7(c’d)
a€AbeB,ceC,deD



—n(a,a)—n(b,B)—n(c,y)—n(d,d
l. E(A,B),(C.D) - Z 2 (a,0)=n(b,5)=n{e,7)—n( )f(a,b),(c,d)
acA,beB,ceC,deD

an(a,(x)f'rL(b,[)’)fn(g’y)fn(d,ﬁ)f(a by, (cd)

2. E(A7B)~(C,D) f— Z . -
a€ADEB,ceC,deD (D1 + min(Da, Ds))
K >0

Motivation: longer distances have larger fluctuations



—n(a,a)—n(b,8)—n(c,y)—n(d,0
l. Ea,B),c,p) = Z gmn(@e)=nbf)=nlen)=n(dd) o 4
a€AbeB,ceC,deD

27n(a,a)f'rL(b,[J’)f'rL(c,'y)fn(d,cS)f(a.b) (ed)

2. Ea)c,Dp) = Z ' "
acAbeB,ccC,deD (Dy + min(Dz, Ds))
K>0

Motivation: longer distances have larger fluctuations

drawback: AF is not the variation of any functional



—n(a,a)—n(b,8)—n(c,y)—n(d,0
l. Ea,B),c,p) = Z 2~ n(ae)=n(b,B)=n(er)—n( >f(a7b).,(c,d)
a€AbeB,ceC,deD

27n(a,a)f'rL(b,[J’)f'rL(c,'y)fn(d,zS)f(a.b) (ed)

2. Ea)c,Dp) = Z ) "
acAbeB,ccC,deD (D1 + min(Ds, Ds))
K>0

Motivation: longer distances have larger fluctuations

drawback: AF is not the variation of any functional

f(@ b),(c,d)
3. E,B),(c,p) = Z J@b).(e. _
a€AbEB,ceC,dED (D1 + min(Dsy, D3))

AFE is the variation of a functional
(same expression with the sum over all quadruplets a,b,c,d)



—n(a,a)—n(b,8)—n(c,y)—n(d,0
l. Ea,B),c,p) = E gmn(@e)=nbf)=nlen)=n(dd) o 4
a€AbeB,ceC,deD

2-n(we)=nb ) =nlen)=n(dd) £ ) (o a)

2. Ep)c.p) = > ; K
a€AbEB,ceC,deD (D1 + min(Ds, D3))
K >0

Motivation: longer distances have larger fluctuations

drawback: AF is not the variation of any functional

flap),(c,a)
3. E,B),(c,p) = Z J@b).(e. §
a€AbeB,ceC,deD (D1 + min(D2, D3))

AFE is the variation of a functional
(same expression with the sum over all quadruplets a,b,c,d)

Why choosing 2.7 It works better



Performances of distance-based reconstruction algorithms
as a function of mutation rate per site

30 — \
N
— FastME
25| — SBiX (greedy from FastME) §
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— SBiX (AN) g

Robinson-Foulds
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normalized Robinson-Foulds

Scaling behavior with the number of taxa N

— FastME N=40

0.6 |— FastME N=60 7
3 FastME N=80 1
0.5 |— FastMEN=120
| |— SBiX N=40
— SBiX N=60
0.4r SBiX N=80
b SBiX N=120

Il
normalized Robinson-Foulds

(W\)’AN)

dependence on  p?A(NV)

A(N) mean distance between

>\the0 (N)

2N (logg N +1) — 4N +2

N -1

001 Tor T

()2,

theo

(N)

leaves

for completely balanced trees
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computational complexity O(N”4)
still good for large phylogenies (~ 1000 taxa)
but not for very large (>10000 taxa)
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e.g. Protein interaction networks
Virus Phylogeny
Tree of life



Practical drawback of SBiX:
computational complexity O(N”4)
still good for large phylogenies (~ 1000 taxa)
but not for very large (>10000 taxa)

e.g. Protein interaction networks
Virus Phylogeny
Tree of life

In general, areas where the phylogeny
is important for prediction
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Subtree representatives

My =Mypg+ M, s
My = Ma’,y + M/gjg
M3 = MO{,(S + M[B,'y

E((a,B),(c,p)) = max(0, My — min(My, M3))

How is M defined?
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Subtree representatives

My =Mypg+ M, s
My = Ma’,y + M/gjg
M3 = MO{,(S + M[B,'y

E((A,B),(C,D)) — max((), ./\/l1 - Hlin(./\/lg, Mg))

How is M defined?
If Mas= 3 Dlab)2 @070 AE =4Lp

acAbeB

Introduce the idea that longer distances have larger fluctuations

for each leaf a we define a length

1 1 1
la = NiB ZD(a,b) + Nic ZD(Q,C) + NiD ZD(a,d)
beB ceC deD

the idea is filtering leaves’ contributions using this length
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A better approach is to use a smooth weight, e.g.
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then M= 5 D(a, b)w,wppaps
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with w effective Pauplin’s weights



Introduce a weight Pa=f (lhin/la)

simple case Pa =0 (lhin/la — i)

A better approach is to use a smooth weight, e.g.

pa = (I /1a)" k>0

then M, = Z D(a, b)wawppapy
acA,beB

with w effective Pauplin’s weights

Identify the weight p, with the probability of considering the leaf a
when defining the subtree representative

Compute the effective Pauplin weights
by using a suitable partition function



Wq = Z P(a17aQ,0[3)2_U(a1)—0(a2)_g(a3)
e o(a;) € {0,1}

but the probability factorizes on each node!

wa:ﬁ 11 (1+ II (1—pai)>

a; €Pq ai €V (a)




we = Y Play,ay,az)2 7o) 7olez)moles) & Vi)
{o(ai)} o(a;) € {0,1} -0

but the probability factorizes on each node!

We = I1 (1+ 11 (1—pai))

a; €Pq a; €V(a;)

number of nodes in the path from a to«



we = Y Play,ay,az)2 7o) 7olez)moles) & Vi)
{o(ai)} o(a;) € {0,1} -0

but the probability factorizes on each node!

probability that the node o; doesn’t exist

number of nodes in the path from a to«



we =Y Plar,ag,ag)2 ) olez)molas) o)
{o(ai)} o(a;) € {0,1} -0

but the probability factorizes on each node!

probability that the node o; doesn’t exist
number of nodes in the path from a to«

drawback: AFE is not the variation of any functional
—> weights depend on the chosen edge!



Wy = Z P(Clq,OzQ,a3)2_g(a1)_‘7(0‘2)_‘7(0‘3) 0‘1 Vi)
{o()} o(a;) € {0,1} —0

but the probability factorizes on each node!

probability that the node o; doesn’t exist
number of nodes in the path from a to«

drawback: AFE is not the variation of any functional
—> weights depend on the chosen edge!

positive facts:

I. It works

2. computational complexity O(N”2 log(N))
3. general method to weigh taxa



Performances of distance-based reconstruction algorithms
as a function of mutation rate per site
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Performances of distance-based reconstruction algorithms
as a function of the horizontal transfer rate
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The benchmarking problem
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Copystree

controlled model-free

Players (copysts) have few minutes to copy a given text.
Texts evolve by:
ecopying <«—— human ability
*degradation <«—— parameters

O dolce amor de caritate, pregote che me te lassi tenere, se te piace che da ti non
me deggia mai partire. Lo dolce amore che me se € dato, madonna, puoi che me
I'hai prestato, non me lo tollere questa fiata puoi che I'agio desiderato; puoi che ce
so' venuta e che me te si' dato, non me voglio piu partire. O dolce amore smesurato
che te si' umiliato ed a questa misera te si dato. O dolce matre non me lo retollere,
lo voglio tenere che me confuorti e che ma mea mente allustri. Puoi che m'hai
reconsolata ed ame allustrata, no lo retollere se te piace. O dolce amore de grande
confuorto che resusciti chi € muorto. O dolce amor de veritate che dai lume alli
accecati, illuminame se te piace.



Copystree
Is 2 web experiment -game- aimed to provide
a completely controlled and model-free phylogeny

Players (copysts) have few minutes to copy a given text.
Texts evolve by:
ecopying <«—— human ability
*degradation <«—— parameters
TIME

O dolce amor de caritate, pregote che me te lassi tenere, se te piace che da ti non
me deggia mai partire. Lo dolce amore ¢ e se & dato, madonna, puoi che me
I'hai prestato, no lo tollere questa ﬁa&oi che l'agio deside uoi che ce
so' venuta e che i' dato, non me voglio piu partire. O dolce smesurato
che te si' umilia ‘questa misera te si d dolce matre non me lo retollere,
lo voglio tenere che me confuorti e che mafea mente allustri. Puoi che m'hai
reconsolata ed ame allustrata, no lo retollere se te piace. O dolce amore de grande

confuorto che resusciti chi € muorto. O dolce amor de veritate che dai lume alli
accecati, illuminame se te piace.



real phylogeny

reconstructed
phylogeny



An application in linguistics:
The tree of languages
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Swadesh lists
Lists of words representing a language

*First attempt: cognate words — distance 0/
ephonological characters

I
You
We
Ear
Eye

ei io
yu tu
wi  noi
ir oreky~o
ei oky~o

— Levenshtein (edit) distance:

number of insertions, deletions or substitutions

to go from a word to another



Swadesh lists
Lists of words representing a language

*First attempt: cognate words — distance 0/
ephonological characters

I ei io
You yu tu
We wi noi
Ear ir oreky~o
Eye ei oky~o

distance between languages:
average Levenshtein distance
between homologous words

— Levenshtein (edit) distance:
number of insertions, deletions or substitutions
to go from a word to another



ASJP (Automated Similarity Judgment Program) database

50 language families
languages per family varing from O(10) to O(100)
each language list 100 homologous words (but incomplete!)
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50 language families
languages per family varing from O(10) to O(100)
each language list 100 homologous words (but incomplete!)

40 words common
to almost all languages
in each family
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ASJP (Automated Similarity Judgment Program) database

50 language families
languages per family varing from O(10) to O(100)
each language list 100 homologous words (but incomplete!)

40 WO rds common L «—e sorted by Petroni stability
+—e 40 most present sorted by Petroni stability
to almost all languages 05|~ o sorted by presence
. . «— sorted and weighted by presence
in each family =
Indoeuropean
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081 ~ e i /\_\
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& 7 - 1 number of considered words
02F . i
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word index



Comparison with Ethnologue (experts) classification

0.8

o
=)
T

normalgzed RF
T

o
o

— NIJ

— FastME

— FastSBIX-from FastME
FastSBIX-from NJ

MEAN VALUES
NJ 0.247
FastME 0.240
FastSBIX-from FastME 0.239
FastSBIX-from NJ 0.235

LA

0

10 20

language family index

30

50

No much difference in performances between reconstruction algorithms:
too much noise or too short and/or incomplete lists?
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evolving through mutation, deletion and insertion



Artificial lists of words
evolving through mutation, deletion and insertion

N=100 languages, lists of 100 words

common to all languages

+100 words of which 80%

is randomly and independently
deleted from each language lists

normalized RF
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Artificial lists of words
evolving through mutation, deletion and insertion
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INDO-EUROPEAN

Romance

Germanic

Celtic

Balto-Slavic

Indo-lranian




An appluaaon in b‘dﬁ‘)’:ﬁ

Influenza virus evolution



Extract information about the phylogenetic process
from phylogenetic tree shape

E F G
DENV-1
5 DENV-3

DENV-2

o

DENV-4

S virus

population phylogeny Time Dengue virus phylogeny HIV population phylogeny

Human influenza A virus
population phylogeny
Fig. 1. (A) Prevaccination measles dynamics: weekly case
reports for Leeds, UK (7). (B) Weekly reports of influenza-
like illness for France (44). (C) Annual diagnosed cases of
HIV in the United Kingdom (45). (D) Measles phylogeny: the
measles virus nucleocapsid gene [63 sequences, 1575 base
pairs (bp)]. (E) Influenza phylogeny: the human influenza A
virus (subtype H3N2) hemagglutinin (HAT) gene longitudi-
nally sampled over a period of 32 years (50 sequences, 1080
bp). (F) Dengue phylogeny: the dengue virus envelope gene
e

from all four serotypes (DENV-1 to DENV-4, 120 sequences,
1485 bp). (G) HIV-1 population phylogeny: the subtype B
envelope (E) gene sampled from different patients (39
sequences, 2979 bp). (H) HCV population phylogeny: the
virus genotype 1b E1E2 gene sampled from different pa-
tients (65 sequences, 1677 bp). (1) HIV-1 within-host phy-
logeny: the partial envelope (E) gene longitudinally sampled HCV population phylogeny HIV within host phylogeny

from a single patient over 5.8 years [58 sequences, 627 bp;

patient 6 from (26)]. All sequences were collected from GenBank and trees were constructed with maximum likelihood in PAUP* (46). Horizontal
branch lengths are proportional to substitutions per site. Further details are available from the authors on request.

Time

T

328 16 JANUARY 2004 VOL 303 SCIENCE www.sciencemag.org



Balance/unbalance measures
A; number of taxa diversifying from node j, including itself
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Asymptotic behavior

_ _ 1l -«
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10° . V‘O‘zg N=10', 1M 71 M. Stich and S.C. Manrubia:
N0 COA Eur. Phys. J. B 70, 583-592 (2009)
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Almost all evolutive process produce asymptotically
balanced tress
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Influenza A virus
RNA in 8 segments
(~10000 nucleotides)
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Nucleor?ro(eln
(RNA),

Influenza
2 Virus
Anatomy

© —Neuraminidase
(Sialidase)

S \Hemagglmlnln

HA (Hemagglutinin) and
(NA) Neuraminidase
are the surface proteins

responsible for the interaction

with host immune system
(~1000 nucleotides each)

e.g. H3N2 (from 1968)

Influenza A virus
RNA in 8 segments
(~10000 nucleotides)

Predictive isolate: Codon set
AfShangdong/S/84: Positively selected codons




Open question:
Which evolutive process produces
the comb-like (or unbalanced) tree?
virus - host immune system interaction?



Open question:
Which evolutive process produces
the comb-like (or unbalanced) tree?
virus - host immune system interaction?

More general open questions:

taking into account deviations from additivity
in algorithms (horizontal transfer)

exploiting additional information
(internal nodes)

modeling evolutionary processes leading to
real phylogenies



Thank you



