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◮ T is an exact map, hence it is ergodic;
◮ For almost every x ∈ [0, 1]:

lim
n→+∞

2
n

log qn = h(T )

where pn/qn is the n-th convergent of x and h(T ) is the
entropy of T .

◮ h(T ) = π2

6 log 2
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◮ there exist k1, k2 ∈ N such that the matching condition
T k1

α (α) = T k2
α (α − 1) holds for all α ∈ I;

◮ the pair (k1, k2) is minimal;
◮ (+ some other technical conditions)

Then h is monotone on I; more precisely

i h is strictly increasing on I if k1 < k2;

ii h is constant on I if k1 = k2;

iii h is strictly decreasing on I if k1 > k2.
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Some interesting issues

Nakada and Natsui proved that matching intervals exist, and
this has interesting counterparts on the behaviour of the
entropy.
More precisely

◮ each of the cases (i), (ii) and (iii) takes place at least on
one infinite family of disjoint matching intervals clustering
at the origin ([NN], Thm. 3);

◮ the matching conditions define a collection of open
intervals (called matching intervals);

◮ the entropy is thus a non-monotonic function;
◮ conjecture: the union of all matching intervals is a dense ,

open subset of [0, 1] with full Lebesgue measure .
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FACT1: if 0 < α < β < 1 then there exists a unique rational
value r ∈ (α, β) such that

den(r) < den(r ′) for all r ′ ∈ Q ∩ (α, β), r ′ 6= r .

The value r will be called the pseudocenter of the interval (a, b).
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For each a ∈ Q ∩ (0, 1) we define open interval Ia as follows

a = [0; A±] 7→ Ia := (α−, α+), α± := [0; A±].

We consider also the degenerate case a = 1, for which we
define

Ia :=]

√
5 − 1
2

, 1] recall that

√
5 − 1
2

= [0; 1])

The interval Ia := (α−, α+) will be called the quadratic interval
generated by a ∈ Q ∩ (0, 1).
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Some properties of quadratic intervals

◮ If ξ ∈ Īa then a is a convergent of ξ;
◮ if a′ ∈ Q ∩ Ia, a′ 6= a, then den(a′) > den(a);
◮ a is the pseudocenter of Ia;
◮ if Ia ∩ Ib 6= ∅, then either a is a convergent of b or b is a

convergent of a;
◮ if Ia ⊂ Ib then b is a convergent of a.
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Maximal intervals

The connected components of M are quadratic intervals;

Definition
Let a ∈ Q∩]0, 1], we say that the quadratic interval Ia is maximal
if it is not properly contained in any other quadratic interval Ib,
(b ∈ Q, b 6= a).

Lemma
Every quadratic interval Ia is contained in a unique maximal
quadratic interval.

Lemma
If Ia is maximal then for all a′ ∈ Q ∩ (0, 1)

Ia ∩ Ia′ 6= ∅ ⇒ Ia′ ⊂ Ia,

and equality holds iff a = a′.
In particular, distinct maximal intervals do not intersect.
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String order

σ := [0; S], τ := [0; T ].

Aim. Ordering (periodic) quadratic surds via their periods.
For strings of equal length we consider the alternate
lexicographic order:
given two distinct finite strings S and T of equal length ,
consider the first index on which they differ

ℓ := min{i : Si 6= Ti}.

S < T iff
{

Sℓ < Tℓ if ℓ ≡ 0 mod 2
Sℓ > Tℓ if ℓ ≡ 1 mod 2

The exact same definition also gives a total ordering on the
space of infinite strings.



If S and T have the same length (finite or infinite),

S < T ⇐⇒ [0; S] < [0; T ]

i.e. this order is just the pull back the order structure on R, via
identification of a string with the value of the corresponding c.f.
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String Lemma

Lemma
Let S, T be two nonempty, finite strings.
Then the pair of infinite strings

S, T

is ordered in the same way as the pair

ST , TS

namely
ST T TS ⇐⇒ S T T .
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Apart for the exceptional case of period doubling, the string A
corresponds to a maximal interval iff it is the strict minimum
among all its cyclic permutations.
Example: Let a := [0; a1, a2, ..., am], assume there is
k ∈ {1, ..., m} such that ak > aj ∀j 6= k ; then

◮ if k = 1 then Ia is maximal;
◮ if k 6= 1 then Ia is not maximal.

In the first case, all cyclic permutations produce bigger values;
in the second case, the cyclic permutation that carries ak in the
first place produces a value smaller than the original one.
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The exceptional set and bounded type values.

M =
⋃

a∈Q∩(0,1]

Ia,

E :=]0, 1] \M,

EN := E ∩ (
1

N + 1
,

1
N

],

CN := {x ∈ (0, 1] \ Q : x = [0; a1, a2, ..., ak , ...], aj ≤ N}.

Then
φN(CN−1) ⊂ EN ⊂ CN

φN(x) := 1
N+x
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Lebesgue measure vs. Hausdorff dimension

φN(CN−1) ⊂ EN ⊂ CN

φN(x) := 1
N+x

EN ⊂ CN ⇒ |EN | = 0 ⇒ |E| =
∑

|EN | = 0.

dimH(EN) ≥ dimH(CN−1) → 1 as N → ∞ ⇒

⇒ dimH(E) = sup
N

dimH(EN) = 1.
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Algebraic matching

If a ∈ (0, 1] and Ia is a maximal interval then the map

α 7→ h(Tα)

is monotone on Ia.
Indeed, there exist N, M ∈ N+ such that the following
algebraic matching condition holds for all α ∈ Ia:

1
T N

α (α)
+

1
T M

α (α − 1)
= −1 (N, M)alg

This is enough to carry over the strategy of Nakada and Natsui.
Remark: each maximal interval is almost completly covered by
the matching ing intervals of NN (what is not covered is a
closed countable set)
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A quick account of NN strategy (I)

FACT: for “typical” x ∈ (α − 1, α)

h(Tα) = 2 lim
n→∞

1
n

log qn.
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Here pn/qn denotes the nth α-convergent ofx, p′
m/q′

m denotes
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The end
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See [CT]
What about natural extensions?

Who knows!?
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