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y

0. 2975 0.298 0. 2985

0.296 0. 2965 0.297
X

[NN] H. Nakada, R. Natsui, The non-monotonicity of the
entropy of a-continued fraction transformations, Nonlinearity 21

(2008), 1207-1225
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Nakada and Natsui proved that matching intervals exist, and
this has interesting counterparts on the behaviour of the
entropy.

More precisely

» each of the cases (i), (ii) and (iii) takes place at least on
one infinite family of disjoint matching intervals clustering
at the origin ([NN], Thm. 3);

» the matching conditions define a collection of open
intervals (called matching intervals);

» the entropy is thus a non-monotonic function;

» conjecture: the union of all matching intervals is a dense,
open subset of [0, 1] with full Lebesgue measure .
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For each a € QN (0, 1) we define open interval I, as follows

a=[0;Af] — lg:=(a",a™), o :=][0;A%].

We consider also the degenerate case a = 1, for which we
define

la : _]f 1 ,1] recall that \/52

=[0:1])

The interval I := (o, a™) will be called the quadratic interval
generated by a € QN (0,1).
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» ifa’ € QN l,, @ # a, then den(a’) > den(a);
» ais the pseudocenter of I;
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If ¢ € I then a is a convergent of &;
ifa’ € QNly, @ # a, then den(a’) > den(a);
a is the pseudocenter of I;

if 1, N1y # 0, then either a is a convergentof b or b is a
convergent of a;

if I C Iy then b is a convergent of a.
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Maximal intervals

The connected components of M are quadratic intervals;
Definition

Let a € QN]0, 1], we say that the quadratic interval |5 is maximal
if it is not properly contained in any other quadratic interval |,

(b €Q, b #a).

Lemma
Every quadratic interval I is contained in a unique maximal
guadratic interval.

Lemma
If I is maximal then for alla’ € Q@ N (0, 1)

|am|a/7é@ :>Ia/cla,

and equality holds iff a = a’.
In particular, distinct maximal intervals do not intersect.
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String order

o:=[0;S], 7 :=[0;T].

Aim. Ordering (periodic) quadratic surds via their periods.
For strings of equal length we consider the alternate
lexicographic order:

given two distinct finite strings S and T of equal length ,
consider the first index on which they differ

l:= mln{l . 5 75 Ti}.

S, <T,if£=0 mod 2

S<Tif { S, >T,ift=1 mod 2

The exact same definition also gives a total ordering on the
space of infinite strings.



If S and T have the same length (finite or infinite),
S<T < [0;S]<[0;T]

i.e. this order is just the pull back the order structure on R, via
identification of a string with the value of the corresponding c.f.
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Lemma
Let S, T be two nonempty, finite strings.
Then the pair of infinite strings

S, T
is ordered in the same way as the pair
ST, TS

namely

ST%TS ~— S=T.

AV
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Apart for the exceptional case of period doubling, the string A
corresponds to a maximal interval iff it is the strict minimum
among all its cyclic permutations.
Example: Leta:=[0;a1,ay,...,am], assume there is
k € {1,...,m} such that ax > a; Vj # k; then

» if k =1 then |5 is maximal;

» if k # 1 then I is not maximal.

In the first case, all cyclic permutations produce bigger values;
in the second case, the cyclic permutation that carries ay in the
first place produces a value smaller than the original one.
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The exceptional set and bounded type values.

M - U Ia,
acQn(0,1]
£:=]0,1]\ M,
1 1

Cn ={x€(0,1]\Q : x =[0;as,ay,...,a,...], a <N}

Then
#n(Cn-1) CEn C Cy

d)N (X) = NiLt,-x
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Lebesgue measure vs. Hausdorff dimension

#n(Cn—1) CEn C Cy

on(X) = s

Exn CCn= [En|=0= [£]=) [En|=0.

dimy(Eyn) > dimy(Cn_1) — 1 asN — 00 =

= dimy(€) = supdimy(En) = 1.
N
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Algebraic matching

If a € (0,1] and I, is a maximal interval then the map
a— h(T,)

iS monotone on I;.
Indeed, there exist N, M € N, such that the following
algebraic matching condition holds for all « € 15:

1, 1
T (@) TMa—1)

=-1 (N,M)aq

This is enough to carry over the strategy of Nakada and Natsui.
Remark: each maximal interval is almost completly covered by
the matching ing intervals of NN (what is not covered is a
closed countable set)
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FACT: for “typical” x € (a — 1, )

.1
h(T,) = anrgo - log gn.
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Lemma
Let I, := (o, a™) be a maximal interval,

a” <d <x<a<at ()

then there exist increasing sequences (n), (my) such that
(i) TN(x) € (¢/,a) <= n = n for some k (k-return);

(i) TO(x—-1)e (e -1,a—1) < m=m for some k

(k"-return);

(i) ng —mg = k(N —M);

(iii) Tak(x) — T%(x — 1) = 1 (syncronous return);

(V) On, = Oy, -

Here pn/dn denotes the n" a-convergent ofx, p/, /g, denotes

the m" o/-convergent ofx — 1, and N and M are such that

condition (N, M)zq holds on I,.
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“Proof”

For “typical” x € (o/, «) we get

. K ,
()=, i = po((e,)

: . k
(i) = . me por((0f = 1,0 = 1))

. 1 ome 1 .My
h(T,) = 2lim e log gn, = 21im e e log gp,, = lim Eh('ra,)

. . — .k
lim Tk _ I|m(1+u) = 1+(M—=N)lim — = 1+(M—=N)pq((¢/, a)
Nk Nk Nk



The end
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The effect of flipping: variance
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Is the entropy constant on intervals of the type (ay, , o4 )?

with oy :=[0;n,n—1,1], «f :=[0;A], neN
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[NN]



Question 3.



Question 3.

is the entropy linear on (35, 51)?



Question 3.

is the entropy linear on (35, 51)?

with gy :=[0;n], B :=[0;n—1,1], neN



Question 3.

is the entropy linear on (35, 51)?
with gy :=[0;n], B :=[0;n—1,1], neN

Probably not [CMPT].



Question 3.

is the entropy linear on (35, 51)?

with g, :=[0;A], B7 :=[0;n—1,1],

Probably not [CMPT].
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Some more guestions
What about the self similar structure? how is it generated?

0.0005 e o

0.05 0.06 0.07 0.08 0.09 oL

See [CT]
What about natural extensions?

“ Who knows!?



The end
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