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◮ T is an exact map, hence it is ergodic;
◮ For almost every x ∈ [0, 1]:

lim
n→+∞

2
n

log qn = h(T )

where pn/qn is the n-th convergent of x and h(T ) is the
entropy of T .

◮ h(T ) = π2

6 log 2



The maps Tα

Tα for α = 1



The maps Tα

Tα for α = 1



The maps Tα

Tα for α = (
√

5 − 1)/2



The maps Tα

Tα for α = 1/2



The maps Tα

Tα for α =
√

2 − 1



The maps Tα

Tα for 0 < α << 1



The maps Tα

Tα for α = 0



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x),



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x), cα(x) := ⌊ 1

|x | + 1 − α⌋.



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x), cα(x) := ⌊ 1

|x | + 1 − α⌋.

Inverting the first equation above we get



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x), cα(x) := ⌊ 1

|x | + 1 − α⌋.

Inverting the first equation above we get

x =
ǫ(x)

cα(x) + Tα(x)
, ǫ(x) = sign(x)



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x), cα(x) := ⌊ 1

|x | + 1 − α⌋.

Inverting the first equation above we get

x =
ǫ(x)

cα(x) + Tα(x)
, ǫ(x) = sign(x)

Iterating this procedure we recover the infinite α-continued
fractional expansion:



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x), cα(x) := ⌊ 1

|x | + 1 − α⌋.

Inverting the first equation above we get

x =
ǫ(x)

cα(x) + Tα(x)
, ǫ(x) = sign(x)

Iterating this procedure we recover the infinite α-continued
fractional expansion:

x =
ǫ1,α

c1,α +
ǫ2,α

c2,α + . . .



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x), cα(x) := ⌊ 1

|x | + 1 − α⌋.

Inverting the first equation above we get

x =
ǫ(x)

cα(x) + Tα(x)
, ǫ(x) = sign(x)

Iterating this procedure we recover the infinite α-continued
fractional expansion:

x =
ǫ1,α

c1,α +
ǫ2,α

c2,α + . . .

which is sometimes written as



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x), cα(x) := ⌊ 1

|x | + 1 − α⌋.

Inverting the first equation above we get

x =
ǫ(x)

cα(x) + Tα(x)
, ǫ(x) = sign(x)

Iterating this procedure we recover the infinite α-continued
fractional expansion:

x =
ǫ1,α

c1,α +
ǫ2,α

c2,α + . . .

which is sometimes written as

x = [0; (ǫα,1, cα,1), (ǫα,2, cα,2), (ǫα,3, cα,3), ...]



α–continued fractions and the maps Tα
The maps Tα : [α − 1, α] → [α − 1, α] are defined as follows:

Tα(x) :=
1
|x | − cα(x), cα(x) := ⌊ 1

|x | + 1 − α⌋.

Inverting the first equation above we get

x =
ǫ(x)

cα(x) + Tα(x)
, ǫ(x) = sign(x)

Iterating this procedure we recover the infinite α-continued
fractional expansion:

x =
ǫ1,α

c1,α +
ǫ2,α

c2,α + . . .

which is sometimes written as

x = [0; (ǫα,1, cα,1), (ǫα,2, cα,2), (ǫα,3, cα,3), ...]



Other features

Many arithmetical properties of RCF expansions transfer also
to α-expansions:



Other features

Many arithmetical properties of RCF expansions transfer also
to α-expansions:

◮ the expansion is not unique for some special values



Other features

Many arithmetical properties of RCF expansions transfer also
to α-expansions:

◮ the expansion is not unique for some special values (Q);



Other features

Many arithmetical properties of RCF expansions transfer also
to α-expansions:

◮ the expansion is not unique for some special values (Q);
◮ there is a countable set of values with eventually periodic

expansion



Other features

Many arithmetical properties of RCF expansions transfer also
to α-expansions:

◮ the expansion is not unique for some special values (Q);
◮ there is a countable set of values with eventually periodic

expansion (quadratic surds).



Other features

Many arithmetical properties of RCF expansions transfer also
to α-expansions:

◮ the expansion is not unique for some special values (Q);
◮ there is a countable set of values with eventually periodic

expansion (quadratic surds).



Ergodic properties of Tα

The maps Tα (α > 0) have the folowing properties
◮ Tα has an invariant probability measure µα(x) := ρ(x)dx

with ρ of bounded variation;



Ergodic properties of Tα

The maps Tα (α > 0) have the folowing properties
◮ Tα has an invariant probability measure µα(x) := ρ(x)dx

with ρ of bounded variation;
◮ Tα is an exact map, hence it is ergodic;



Ergodic properties of Tα

The maps Tα (α > 0) have the folowing properties
◮ Tα has an invariant probability measure µα(x) := ρ(x)dx

with ρ of bounded variation;
◮ Tα is an exact map, hence it is ergodic;
◮ For almost every x ∈ [0, 1]:

lim
n→+∞

2
n

log qn = h(Tα)

where pn/qn is the n-th convergent of the α-expansion of x
and h(Tα) is the entropy of Tα.



Ergodic properties of Tα

The maps Tα (α > 0) have the folowing properties
◮ Tα has an invariant probability measure µα(x) := ρ(x)dx

with ρ of bounded variation;
◮ Tα is an exact map, hence it is ergodic;
◮ For almost every x ∈ [0, 1]:

lim
n→+∞

2
n

log qn = h(Tα)

where pn/qn is the n-th convergent of the α-expansion of x
and h(Tα) is the entropy of Tα.

◮ The entropy h(Tα) can be computed using Rohlin formula:

h(Tα) =

∫ α

α−1
log |T ′

α(x)|dµα(x);



Ergodic properties of Tα

The maps Tα (α > 0) have the folowing properties
◮ Tα has an invariant probability measure µα(x) := ρ(x)dx

with ρ of bounded variation;
◮ Tα is an exact map, hence it is ergodic;
◮ For almost every x ∈ [0, 1]:

lim
n→+∞

2
n

log qn = h(Tα)

where pn/qn is the n-th convergent of the α-expansion of x
and h(Tα) is the entropy of Tα.

◮ The entropy h(Tα) can be computed using Rohlin formula:

h(Tα) =

∫ α

α−1
log |T ′

α(x)|dµα(x);

◮ h(Tα) =?



An historical account

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1

[g,1] (Nakada 81)
[1/2,g] (Nakada 81)

H. Nakada, Metrical theory for a class of continued fraction
transformations and their natural extensions, Tokyo J. Math. 4
(1981), 399-426



An historical account

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1

[g,1] (Nakada 81)
[1/2,g] (Nakada 81)

[r,1/2] (Cassa 95)

A. Cassa: Dinamiche caotiche e misure invarianti
(1995) Tesi di Laurea (analytical results).



An historical account

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1

[g,1] (Nakada 81)
[1/2,g] (Nakada 81)

[r,1/2] (Cassa 95)
numerical values (Cassa 95)

A. Cassa: Dinamiche caotiche e misure invarianti
(1995) Tesi di Laurea (numerical results)



An historical account

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1

[g,1] (Nakada 81)
[1/2,g] (Nakada 81)

[r,1/2] (Cassa 95)
numerical values (Cassa 95)

Luzzi-Marmi (2008)

L. Luzzi, S. Marmi, On the entropy of Japanese continued
fractions, Discrete and continuous dynamical systems, 20
(2008), 673-711.



Zooming in

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5



Zooming in

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5



Zooming in

 3.13

 3.14

 3.15

 3.16

 3.17

 3.18

 3.19

 3.2

 3.21

 3.22

 3.23

 0.28  0.285  0.29  0.295  0.3  0.305  0.31  0.315  0.32



Zooming in

 3.13

 3.14

 3.15

 3.16

 3.17

 3.18

 3.19

 3.2

 3.21

 3.22

 3.23

 0.28  0.285  0.29  0.295  0.3  0.305  0.31  0.315  0.32



Zooming in

 3.178

 3.179

 3.18

 3.181

 3.182

 3.183

 3.184

 3.185

 3.186

 0.295  0.296  0.297  0.298  0.299  0.3  0.301  0.302  0.303  0.304



Question 1.



Question 1.

Is the entropy really not monotone?



Question 1.

Is the entropy really not monotone? Yes!



Question 1.

Is the entropy really not monotone? Yes!

3.1816E0

3.1808E0

x

0.2990.29850.2980.29750.2970.29650.296

y

3.1812E0

3.1804E0

3.18E0



Question 1.

Is the entropy really not monotone? Yes!

3.1816E0

3.1808E0

x

0.2990.29850.2980.29750.2970.29650.296

y

3.1812E0

3.1804E0

3.18E0

[NN] H. Nakada, R. Natsui, The non-monotonicity of the
entropy of α-continued fraction transformations, Nonlinearity 21
(2008), 1207-1225



Matching leads to monotonic behaviour (Thm. 2 in
[NN])

Let I ⊂ [0, 1] be an open interval satisfying the following
properties:



Matching leads to monotonic behaviour (Thm. 2 in
[NN])

Let I ⊂ [0, 1] be an open interval satisfying the following
properties:

◮ there exist k1, k2 ∈ N such that the matching condition
T k1

α (α) = T k2
α (α − 1) holds for all α ∈ I;



Matching leads to monotonic behaviour (Thm. 2 in
[NN])

Let I ⊂ [0, 1] be an open interval satisfying the following
properties:

◮ there exist k1, k2 ∈ N such that the matching condition
T k1

α (α) = T k2
α (α − 1) holds for all α ∈ I;

◮ the pair (k1, k2) is minimal;



Matching leads to monotonic behaviour (Thm. 2 in
[NN])

Let I ⊂ [0, 1] be an open interval satisfying the following
properties:

◮ there exist k1, k2 ∈ N such that the matching condition
T k1

α (α) = T k2
α (α − 1) holds for all α ∈ I;

◮ the pair (k1, k2) is minimal;
◮ (+ some other technical conditions)



Matching leads to monotonic behaviour (Thm. 2 in
[NN])

Let I ⊂ [0, 1] be an open interval satisfying the following
properties:

◮ there exist k1, k2 ∈ N such that the matching condition
T k1

α (α) = T k2
α (α − 1) holds for all α ∈ I;

◮ the pair (k1, k2) is minimal;
◮ (+ some other technical conditions)



Matching leads to monotonic behaviour (Thm. 2 in
[NN])

Let I ⊂ [0, 1] be an open interval satisfying the following
properties:

◮ there exist k1, k2 ∈ N such that the matching condition
T k1

α (α) = T k2
α (α − 1) holds for all α ∈ I;

◮ the pair (k1, k2) is minimal;
◮ (+ some other technical conditions)

Then h is monotone on I; more precisely

i h is strictly increasing on I if k1 < k2;



Matching leads to monotonic behaviour (Thm. 2 in
[NN])

Let I ⊂ [0, 1] be an open interval satisfying the following
properties:

◮ there exist k1, k2 ∈ N such that the matching condition
T k1

α (α) = T k2
α (α − 1) holds for all α ∈ I;

◮ the pair (k1, k2) is minimal;
◮ (+ some other technical conditions)

Then h is monotone on I; more precisely

i h is strictly increasing on I if k1 < k2;

ii h is constant on I if k1 = k2;



Matching leads to monotonic behaviour (Thm. 2 in
[NN])

Let I ⊂ [0, 1] be an open interval satisfying the following
properties:

◮ there exist k1, k2 ∈ N such that the matching condition
T k1

α (α) = T k2
α (α − 1) holds for all α ∈ I;

◮ the pair (k1, k2) is minimal;
◮ (+ some other technical conditions)

Then h is monotone on I; more precisely

i h is strictly increasing on I if k1 < k2;

ii h is constant on I if k1 = k2;

iii h is strictly decreasing on I if k1 > k2.
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Some interesting issues

Nakada and Natsui proved that matching intervals exist, and
this has interesting counterparts on the behaviour of the
entropy.
More precisely

◮ each of the cases (i), (ii) and (iii) takes place at least on
one infinite family of disjoint matching intervals clustering
at the origin ([NN], Thm. 3);

◮ the matching conditions define a collection of open
intervals (called matching intervals);

◮ the entropy is thus a non-monotonic function;
◮ conjecture: the union of all matching intervals is a dense ,

open subset of [0, 1] with full Lebesgue measure .
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FACT1: if 0 < α < β < 1 then there exists a unique rational
value r ∈ (α, β) such that

den(r) < den(r ′) for all r ′ ∈ Q ∩ (α, β), r ′ 6= r .

The value r will be called the pseudocenter of the interval (a, b).
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For each a ∈ Q ∩ (0, 1) we define open interval Ia as follows

a = [0; A±] 7→ Ia := (α−, α+), α± := [0; A±].

We consider also the degenerate case a = 1, for which we
define

Ia :=]

√
5 − 1
2

, 1] recall that

√
5 − 1
2

= [0; 1])

The interval Ia := (α−, α+) will be called the quadratic interval
generated by a ∈ Q ∩ (0, 1).
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Some properties of quadratic intervals

◮ If ξ ∈ Īa then a is a convergent of ξ;
◮ if a′ ∈ Q ∩ Ia, a′ 6= a, then den(a′) > den(a);
◮ a is the pseudocenter of Ia;
◮ if Ia ∩ Ib 6= ∅, then either a is a convergent of b or b is a

convergent of a;
◮ if Ia ⊂ Ib then b is a convergent of a.
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Maximal intervals

The connected components of M are quadratic intervals;

Definition
Let a ∈ Q∩]0, 1], we say that the quadratic interval Ia is maximal
if it is not properly contained in any other quadratic interval Ib,
(b ∈ Q, b 6= a).

Lemma
Every quadratic interval Ia is contained in a unique maximal
quadratic interval.

Lemma
If Ia is maximal then for all a′ ∈ Q ∩ (0, 1)

Ia ∩ Ia′ 6= ∅ ⇒ Ia′ ⊂ Ia,

and equality holds iff a = a′.
In particular, distinct maximal intervals do not intersect.
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String order

σ := [0; S], τ := [0; T ].

Aim. Ordering (periodic) quadratic surds via their periods.
For strings of equal length we consider the alternate
lexicographic order:
given two distinct finite strings S and T of equal length ,
consider the first index on which they differ

ℓ := min{i : Si 6= Ti}.

S < T iff
{

Sℓ < Tℓ if ℓ ≡ 0 mod 2
Sℓ > Tℓ if ℓ ≡ 1 mod 2

The exact same definition also gives a total ordering on the
space of infinite strings.



If S and T have the same length (finite or infinite),

S < T ⇐⇒ [0; S] < [0; T ]

i.e. this order is just the pull back the order structure on R, via
identification of a string with the value of the corresponding c.f.
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String Lemma

Lemma
Let S, T be two nonempty, finite strings.
Then the pair of infinite strings

S, T

is ordered in the same way as the pair

ST , TS

namely
ST T TS ⇐⇒ S T T .
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(ii) If A = ST with S, T finite nonempty strings, then

(a) either ST < TS
(b) or ST = TS with T = S, |S| odd

Remark: Case (b) actually holds: for instance for A = (3, 3).
We call this phenomenon period doubling.
This characterization says that, apart for the exceptional case of
period doubling, the string A corresponds to a maximal interval
iff it is the strict minimum among all its cyclic permutations.



Apart for the exceptional case of period doubling, the string A
corresponds to a maximal interval iff it is the strict minimum
among all its cyclic permutations.
Example: Let a := [0; a1, a2, ..., am],



Apart for the exceptional case of period doubling, the string A
corresponds to a maximal interval iff it is the strict minimum
among all its cyclic permutations.
Example: Let a := [0; a1, a2, ..., am], assume there is
k ∈ {1, ..., m} such that ak > aj ∀j 6= k ;



Apart for the exceptional case of period doubling, the string A
corresponds to a maximal interval iff it is the strict minimum
among all its cyclic permutations.
Example: Let a := [0; a1, a2, ..., am], assume there is
k ∈ {1, ..., m} such that ak > aj ∀j 6= k ; then

◮ if k = 1 then Ia is maximal;
◮ if k 6= 1 then Ia is not maximal.

In the first case, all cyclic permutations produce bigger values;



Apart for the exceptional case of period doubling, the string A
corresponds to a maximal interval iff it is the strict minimum
among all its cyclic permutations.
Example: Let a := [0; a1, a2, ..., am], assume there is
k ∈ {1, ..., m} such that ak > aj ∀j 6= k ; then

◮ if k = 1 then Ia is maximal;
◮ if k 6= 1 then Ia is not maximal.

In the first case, all cyclic permutations produce bigger values;
in the second case, the cyclic permutation that carries ak in the
first place produces a value smaller than the original one.
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The exceptional set and bounded type values.

M =
⋃

a∈Q∩(0,1]

Ia,

E :=]0, 1] \M,

EN := E ∩ (
1

N + 1
,

1
N

],

CN := {x ∈ (0, 1] \ Q : x = [0; a1, a2, ..., ak , ...], aj ≤ N}.

Then
φN(CN−1) ⊂ EN ⊂ CN

φN(x) := 1
N+x
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Lebesgue measure vs. Hausdorff dimension

φN(CN−1) ⊂ EN ⊂ CN

φN(x) := 1
N+x

EN ⊂ CN ⇒ |EN | = 0 ⇒ |E| =
∑

|EN | = 0.

dimH(EN) ≥ dimH(CN−1) → 1 as N → ∞ ⇒

⇒ dimH(E) = sup
N

dimH(EN) = 1.
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Algebraic matching

If a ∈ (0, 1] and Ia is a maximal interval then the map

α 7→ h(Tα)

is monotone on Ia.
Indeed, there exist N, M ∈ N+ such that the following
algebraic matching condition holds for all α ∈ Ia:

1
T N

α (α)
+

1
T M

α (α − 1)
= −1 (N, M)alg

This is enough to carry over the strategy of Nakada and Natsui.
Remark: each maximal interval is almost completly covered by
the matching ing intervals of NN (what is not covered is a
closed countable set)
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A quick account of NN strategy (I)

FACT: for “typical” x ∈ (α − 1, α)

h(Tα) = 2 lim
n→∞

1
n

log qn.
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Here pn/qn denotes the nth α-convergent ofx, p′
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The end
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See [CT]
What about natural extensions?

Who knows!?
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