On the Limit Curlicue Process for Theta Sums

Francesco Cellarosi

Princeton University

June 1st, 2010

INdAM Meeting Hyperbolic Dynamical Systems in the Sciences Corinaldo, Italy.

Joint work with Jens Marklof, University of Bristol.

Theta Sums and Curves

▶ Let $\alpha, \beta \in \mathbb{R}$ and $N \in \mathbb{N}$. Let $e(z) := e^{2\pi i z}$. Define the **theta** sum

$$S_N(\alpha,\beta) := \sum_{n=1}^N e(\frac{1}{2}n^2\alpha + n\beta) \in \mathbb{C}.$$

Theta Sums and Curves

▶ Let $\alpha, \beta \in \mathbb{R}$ and $N \in \mathbb{N}$. Let $e(z) := e^{2\pi i z}$. Define the **theta** sum

$$S_N(\alpha,\beta) := \sum_{n=1}^N e(\frac{1}{2}n^2\alpha + n\beta) \in \mathbb{C}.$$

▶ For $t \in [0, 1]$, let

$$S_{t,N}(\alpha,\beta) = \sum_{n=1}^{\lfloor tN \rfloor} e(\frac{1}{2}n^2\alpha + n\beta).$$

In particular $S_{1,N}(\alpha,\beta) = S_N(\alpha,\beta)$.

伺 とう ヨン うちょう

Theta Sums and Curves

▶ Let $\alpha, \beta \in \mathbb{R}$ and $N \in \mathbb{N}$. Let $e(z) := e^{2\pi i z}$. Define the **theta** sum

$$S_N(\alpha,\beta) := \sum_{n=1}^N e(\frac{1}{2}n^2\alpha + n\beta) \in \mathbb{C}.$$

▶ For $t \in [0, 1]$, let

$$S_{t,N}(\alpha,\beta) = \sum_{n=1}^{\lfloor tN \rfloor} e(\frac{1}{2}n^2\alpha + n\beta).$$

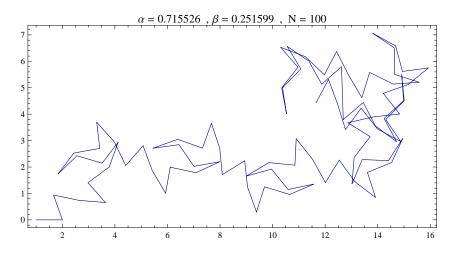
In particular $S_{1,N}(\alpha,\beta) = S_N(\alpha,\beta)$.

▶ We study the **curve** $[0,1] \rightarrow \mathbb{C}$ obtained by linearly interpolating the *N* complex points $S_{\frac{1}{N},N}(\alpha,\beta), S_{\frac{2}{N},N}(\alpha,\beta), \ldots, S_{\frac{N-1}{N},N}(\alpha,\beta), S_{1,N}(\alpha,\beta).$

・吊り くまり くまり

Example (1)

 $\{S_{t,N}(\alpha,\beta)\}_{t\in[0,1]}$

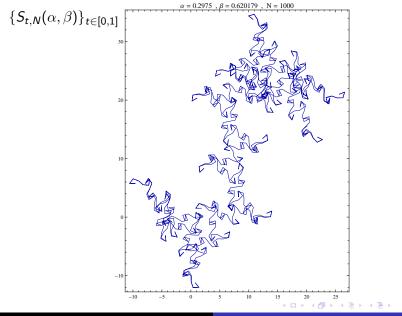


Francesco Cellarosi On the Limit Curlicue Process for Theta Sums

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

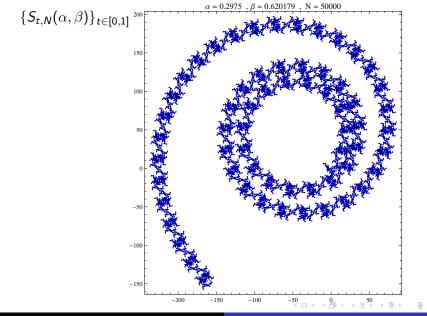
Example (2)



Francesco Cellarosi On the Limit Curlicue Process for Theta Sums

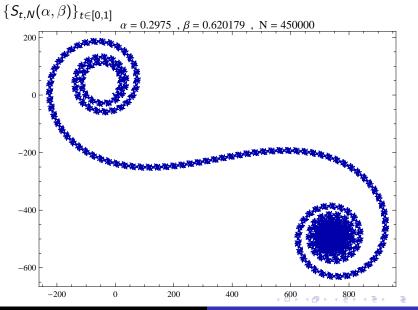
æ

Example (2)



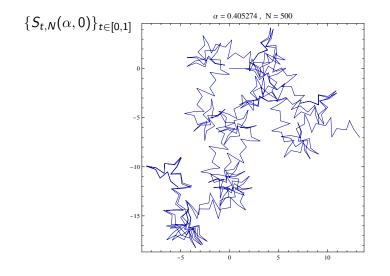
Francesco Cellarosi On the Limit Curlicue Process for Theta Sums

Example (2)



Francesco Cellarosi On the Limit Curlicue Process for Theta Sums

Example (3)

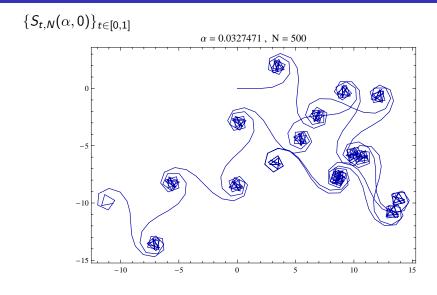


▲ □ ► ▲ □ ►

- < ≣ →

æ

Example (4)

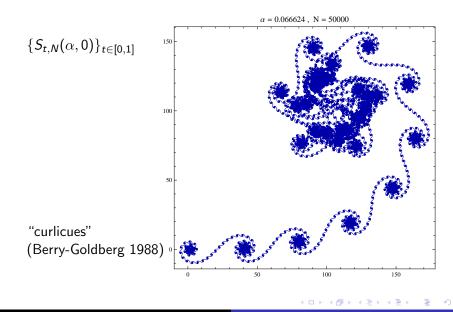


Francesco Cellarosi On the Limit Curlicue Process for Theta Sums

- - 4 回 ト - 4 回 ト

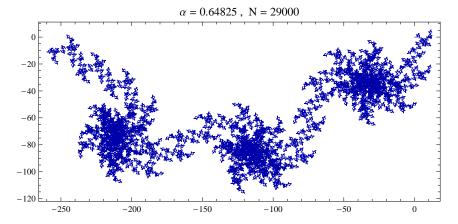
æ

Example (5)



Example (6)

 $\{S_{t,N}(\alpha, 0)\}_{t \in [0,1]}$



"Misshapen chaos of well-seeming forms" (Romeo, *Romeo and Juliet*)

A (10) > (10)

Growth of $|S_{1,N}(\alpha,\beta)|$

$$S_{t,N}(\alpha,\beta) = \sum_{n=1}^{\lfloor tN \rfloor} e(\frac{1}{2}n^2\alpha + n\beta).$$

Let us consider the endpoint of the curve (t = 1).

<ロ> (四) (四) (三) (三) (三)

Growth of $|S_{1,N}(\alpha,\beta)|$

$$S_{t,N}(\alpha,\beta) = \sum_{n=1}^{\lfloor tN \rfloor} e(\frac{1}{2}n^2\alpha + n\beta).$$

Let us consider the endpoint of the curve (t = 1).

▶ **Theorem A** (Hardy-Littlewood 1914). If α is bounded-type, then $|S_{1,N}(\alpha, 0)| \leq C\sqrt{N}$.

(本間) (本語) (本語) (語)

$$S_{t,N}(\alpha,\beta) = \sum_{n=1}^{\lfloor tN \rfloor} e(\frac{1}{2}n^2\alpha + n\beta).$$

Let us consider the endpoint of the curve (t = 1).

- ► **Theorem A** (Hardy-Littlewood 1914). If α is bounded-type, then $|S_{1,N}(\alpha, 0)| \leq C\sqrt{N}$.
- ▶ **Theorem B** (Friedler-Jurkat-Körner 1977; Flaminio-Forni 2006). For every increasing function $b : (1, \infty) \rightarrow (0, \infty)$ s.t. $\int_{1}^{\infty} u^{-1}b^{-4}(u) du < \infty$, there exists a full measure set \mathcal{G}_{b} such that for every $\alpha \in \mathcal{G}_{b}$ and every $\beta \in \mathbb{R}$ the following holds:

$$|S_{1,N}(\alpha,\beta)| \leq C\sqrt{N} b(N).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

(本間) (本語) (本語) (語)

► Theorem C (Jurkat-Van Horne 1981-3). There exists a function Ψ such that for all (except for countably many) a, b ∈ ℝ_{≥0}

$$Leb\left(\left\{\alpha \in [0,1]: \ a < N^{-\frac{1}{2}}|S_{1,N}(\alpha,0)| < b\right\}\right) \xrightarrow{N \to \infty} \Psi_0(a,b).$$

The distribution function Ψ_0 is not Gaussian (it has only finitely many moments: $\Psi_0(R,\infty) \leq \frac{C_0}{R^4}$).

伺下 イヨト イヨト

► Theorem C (Jurkat-Van Horne 1981-3). There exists a function Ψ such that for all (except for countably many) a, b ∈ ℝ_{≥0}

$$Leb\left(\left\{\alpha \in [0,1]: \ a < N^{-\frac{1}{2}}|S_{1,N}(\alpha,0)| < b\right\}\right) \xrightarrow{N \to \infty} \Psi_0(a,b).$$

The distribution function Ψ_0 is not Gaussian (it has only finitely many moments: $\Psi_0(R,\infty) \leq \frac{C_0}{R^4}$).

▶ **Theorem D** (Marklof 1999). There exists a probability measure P_0 on \mathbb{C} such that for all *nice*, open $A \subset \mathbb{C}$

$$Leb\left(\left\{\alpha\in[0,1]:\ \mathsf{N}^{-\frac{1}{2}}\mathsf{S}_{1,\mathsf{N}}(\alpha,0)\in\mathsf{A}\right\}\right)\stackrel{\mathsf{N}\to\infty}{\longrightarrow}\mathrm{P}_0(\mathsf{A}).$$

伺 と く き と く き と

► Theorem C (Jurkat-Van Horne 1981-3). There exists a function Ψ such that for all (except for countably many) a, b ∈ ℝ_{≥0}

$$Leb\left(\left\{\alpha \in [0,1]: \ a < N^{-\frac{1}{2}}|S_{1,N}(\alpha,0)| < b\right\}\right) \xrightarrow{N \to \infty} \Psi_0(a,b).$$

The distribution function Ψ_0 is not Gaussian (it has only finitely many moments: $\Psi_0(R,\infty) \leq \frac{C_0}{R^4}$).

► Theorem D (Marklof 1999). There exists a probability measure P₀ on C such that for all *nice*, open A ⊂ C

$$Leb\left(\left\{\alpha\in[0,1]:\ \mathsf{N}^{-\frac{1}{2}}\mathsf{S}_{1,\mathsf{N}}(\alpha,0)\in\mathsf{A}\right\}\right)\xrightarrow{\mathsf{N}\to\infty}\mathrm{P}_{0}(\mathsf{A}).$$

Marklof's Thesis: For β ∉ Q the analogous statement for S_{1,N}(α, β) is true but P_β = P ≠ P₀ does not depend on β and has slightly better decay: Ψ_β(R, ∞) ≤ C/R⁶ (and does not depend on β).

Limiting Distributions for $t \mapsto N^{-\frac{1}{2}}S_{t,N}(\alpha,0)$

Consider the curve $\gamma_N^{\alpha,\beta}: [0,1] \to \mathbb{C}, \ \gamma_N^{\alpha,\beta}(t):= N^{-\frac{1}{2}}S_{t,N}(\alpha,\beta).$

Limiting Distributions for $t \mapsto N^{-\frac{1}{2}}S_{t,N}(\alpha,0)$

Consider the curve $\gamma_N^{\alpha,\beta}: [0,1] \to \mathbb{C}, \ \gamma_N^{\alpha,\beta}(t):= N^{-\frac{1}{2}}S_{t,N}(\alpha,\beta).$

Theorem 1 (C. 2009, to appear in Ann.Inst. Henri Poincaré). Fix 0 ≤ t₁ < t₂ < ... < t_k ≤ 1. There exists a probability measure P^(k)_{0;t1,...,tk} (curlicue measure) on C^k such that for all nice, open A ⊂ C^k

$$\lambda\left(\left\{\alpha\in[0,1]:\ \left(\gamma_{N}^{\alpha,0}(t_{j})\right)_{j=1}^{k}\in A\right\}\right)\stackrel{N\to\infty}{\longrightarrow}\mathrm{P}_{0;t_{1},\ldots,t_{k}}^{(k)}(A),$$

where λ is a measure on [0, 1], absolutely continuous w.r.t. the Lebesgue measure.

Limiting Distributions for $t \mapsto N^{-\frac{1}{2}}S_{t,N}(\alpha,0)$

Consider the curve $\gamma_N^{\alpha,\beta}: [0,1] \to \mathbb{C}, \ \gamma_N^{\alpha,\beta}(t):= N^{-\frac{1}{2}}S_{t,N}(\alpha,\beta).$

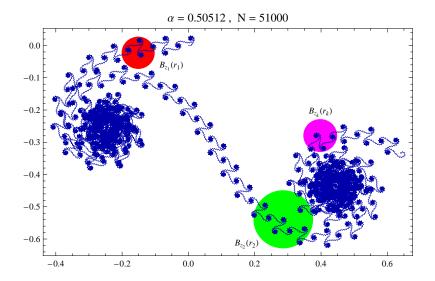
Theorem 1 (C. 2009, to appear in Ann.Inst. Henri Poincaré). Fix 0 ≤ t₁ < t₂ < ... < t_k ≤ 1. There exists a probability measure P^(k)_{0;t₁,...,t_k} (curlicue measure) on C^k such that for all nice, open A ⊂ C^k

$$\lambda\left(\left\{\alpha\in[0,1]:\ \left(\gamma_{N}^{\alpha,0}(t_{j})\right)_{j=1}^{k}\in A\right\}\right)\stackrel{N\to\infty}{\longrightarrow}\mathrm{P}_{0;t_{1},\ldots,t_{k}}^{(k)}(A),$$

where λ is a measure on [0, 1], absolutely continuous w.r.t. the Lebesgue measure.

Thm D corresponds to λ = Leb, k = 1 and t₁ = 1. In particular P₀ = P⁽¹⁾_{0;1}.

伺 と く き と く き と



・ロト ・回ト ・ヨト ・ヨト

æ

In other words:

For every N, given the map ([0,1], B, λ) ∋ α → γ_{α,N} ∈ (C([0,1], C), B_C), construct the induced measure

$$\mathcal{P}_{eta}^{(\mathcal{N})}(\mathcal{A}) := \lambda\left(\left\{lpha \in [0,1]: \ \gamma_{\mathcal{N}}^{lpha,eta} \in \mathcal{A}
ight\}
ight), \qquad \mathcal{A} \in \mathcal{B}_{\mathcal{C}}.$$

伺下 イヨト イヨト

In other words:

► For every *N*, given the map ([0,1], \mathcal{B}, λ) $\ni \alpha \longmapsto \gamma_{\alpha,N} \in (\mathcal{C}([0,1], \mathbb{C}), \mathcal{B}_{\mathcal{C}})$, construct the induced measure

$$\mathcal{P}_{eta}^{(\mathcal{N})}(\mathcal{A}) := \lambda\left(\left\{lpha \in [0,1]: \ \gamma_{\mathcal{N}}^{lpha,eta} \in \mathcal{A}
ight\}
ight), \qquad \mathcal{A} \in \mathcal{B}_{\mathcal{C}}.$$

▶ We have the canonical projection $\pi_{t_1,...,t_k} : C([0,1],\mathbb{C}) \to \mathbb{C}^k$,

$$\pi_{t_1,\ldots,t_k}(\gamma)=(\gamma(t_1),\ldots,\gamma(t_k)).$$

In other words:

► For every *N*, given the map ([0,1], \mathcal{B}, λ) $\ni \alpha \longmapsto \gamma_{\alpha,N} \in (\mathcal{C}([0,1], \mathbb{C}), \mathcal{B}_{\mathcal{C}})$, construct the induced measure

$$\mathcal{P}_{eta}^{(\mathcal{N})}(\mathcal{A}) := \lambda\left(\left\{lpha \in [0,1]: \ \gamma_{\mathcal{N}}^{lpha,eta} \in \mathcal{A}
ight\}
ight), \qquad \mathcal{A} \in \mathcal{B}_{\mathcal{C}}.$$

▶ We have the canonical projection $\pi_{t_1,...,t_k}$: $\mathcal{C}([0,1],\mathbb{C}) \to \mathbb{C}^k$,

$$\pi_{t_1,\ldots,t_k}(\gamma)=(\gamma(t_1),\ldots,\gamma(t_k)).$$

Theorem 1 can be rephrased as:

$$P_0^{(N)} \pi_{t_1,\ldots,t_k}^{-1} \Longrightarrow P_{0;t_1,\ldots,t_k}^{(k)} \quad \text{ as } N \to \infty.$$

白 と く ヨ と く ヨ と

æ

There exists a probability measure P
₀ on (C([0,1], C), B_{fdc}), B_{fdc} ⊂ B_C, that induces all the curlicue measures P^(k)_{0;t1,...,tk} by projection:

$$\tilde{P}_0 \pi_{t_1,...,t_k}^{-1} = P_{0;t_1,...,t_k}^{(k)}.$$

ゆ く き と く き と

There exists a probability measure P
₀ on (C([0,1], C), B_{fdc}), B_{fdc} ⊂ B_C, that induces all the curlicue measures P^(k)_{0;t1},...,t_k by projection:

$$\tilde{P}_0 \pi_{t_1,...,t_k}^{-1} = P_{0;t_1,...,t_k}^{(k)}.$$

Set Ω := (C([0,1], C), B_{fdc}, P̃₀). We get a random process (curlicue process): for P̃₀-almost every point ω ∈ Ω, we have a curve γ_ω.

► There exists a probability measure P
₀ on (C([0,1], C), B_{fdc}), B_{fdc} ⊂ B_C, that induces all the curlicue measures P^(k)_{0;t1,...,tk} by projection:

$$ilde{P}_0 \pi_{t_1,...,t_k}^{-1} = P_{0;t_1,...,t_k}^{(k)}.$$

- Set Ω := (C([0,1], C), B_{fdc}, P̃₀). We get a random process (curlicue process): for P̃₀-almost every point ω ∈ Ω, we have a curve γ_ω.
- (Joint work with Jens Marklof). For $\beta \notin \mathbb{Q}$, we prove the analogous limit theorem for $t \mapsto N^{-\frac{1}{2}}S_{t,N}(\alpha,\beta)$. The measure $\tilde{P}_{\beta} = \tilde{P} \neq \tilde{P}_0$ does not depend on β . We want to understand how a \tilde{P}_0 (or \tilde{P})-typical curve "looks like".

伺 と く き と く き と

Remarks about Theorem 1

Francesco Cellarosi On the Limit Curlicue Process for Theta Sums

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Remarks about Theorem 1

The first proof of Theorem 1 uses: a renormalization formula for theta sums (Hardy-Littlewood 1914, ..., Coutsias-Kazarinoff 1998, Fedotov-Klopp 2005), an accelerated continued fraction algorithm (Schweiger 1982, Kraaikamp-Lopes 1996) and a renewal-type limit theorem for the corresponding denominators (C. 2009) [the latter is based on the mixing property of a suitably constructed special flow, in the spirit of Sinai-Ulcigrai 2008].

向下 イヨト イヨト

Remarks about Theorem 1

- The first proof of Theorem 1 uses: a renormalization formula for theta sums (Hardy-Littlewood 1914, ..., Coutsias-Kazarinoff 1998, Fedotov-Klopp 2005), an accelerated continued fraction algorithm (Schweiger 1982, Kraaikamp-Lopes 1996) and a renewal-type limit theorem for the corresponding denominators (C. 2009) [the latter is based on the mixing property of a suitably constructed special flow, in the spirit of Sinai-Ulcigrai 2008].
- ► An alternative approach uses equidistribution of long, closed horocycles in the unit tangent bundle of a suitably defined non-compact hyperbolic manifold. In particular, it provides an alternative probability space (M, µ) (a homogeneous space) and realizes the curlicue process as an "explicit" function of the geodesic flow on M.

This approach extends from $\beta = 0$ to general β .

・回 ・ ・ ヨ ・ ・ ヨ ・

$\mathcal{M} = \Gamma \backslash G$ and the geodesic flow on it

Francesco Cellarosi On the Limit Curlicue Process for Theta Sums

$\mathcal{M} = \Gamma \backslash G$ and the geodesic flow on it

Let SL(2, ℝ) be the universal cover of SL(2, ℝ), let H(ℝ) be the Heisenberg group. Let us consider the Lie group

$$G = \widetilde{\operatorname{SL}}(2, \mathbb{R}) \ltimes \operatorname{H}(\mathbb{R})$$

and let μ be the Haar measure on G, and let Γ be a discrete subgroup of G.

向下 イヨト イヨト

$\mathcal{M} = \Gamma \backslash G$ and the geodesic flow on it

Let SL(2, ℝ) be the universal cover of SL(2, ℝ), let H(ℝ) be the Heisenberg group. Let us consider the Lie group

$$G = \widetilde{\operatorname{SL}}(2, \mathbb{R}) \ltimes \operatorname{H}(\mathbb{R})$$

and let μ be the Haar measure on G, and let Γ be a discrete subgroup of G.

►
$$\widetilde{\operatorname{SL}}(2,\mathbb{R}) \simeq \mathfrak{H} \times \mathbb{R}$$
. Let $\Gamma_0 = \left\langle \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array} \right) \right\rangle$.
 $\Gamma = \widetilde{\Gamma}_0 \ltimes \dots$

向下 イヨト イヨト

$\mathcal{M} = \Gamma \backslash G$ and the geodesic flow on it

Let SL(2, ℝ) be the universal cover of SL(2, ℝ), let H(ℝ) be the Heisenberg group. Let us consider the Lie group

$$G = \widetilde{\operatorname{SL}}(2, \mathbb{R}) \ltimes \operatorname{H}(\mathbb{R})$$

and let μ be the Haar measure on G, and let Γ be a discrete subgroup of G.

- $\widetilde{\operatorname{SL}}(2,\mathbb{R}) \simeq \mathfrak{H} \times \mathbb{R}$. Let $\Gamma_0 = \left\langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} \right\rangle$. $\Gamma = \widetilde{\Gamma}_0 \ltimes \dots$ • $\mathcal{M} = \Gamma \backslash G = a$ bundle over $\mathcal{M}_0 = \widetilde{\Gamma}_0 \backslash \widetilde{\operatorname{SL}}(2,\mathbb{R})$.
- \mathcal{M}_0 is a 4-fold cover of T^1M , where $M = \Gamma_0 \setminus \mathfrak{H}$ is a non-compact hyperbolic surface with three cusps $(0, \pm \frac{1}{2}, \infty)$ and finite area. Let us normalize $\overline{\mu} = \mu/\mu(\mathcal{M})$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$\mathcal{M} = \Gamma ackslash G$ and the geodesic flow on it

Let SL(2, ℝ) be the universal cover of SL(2, ℝ), let H(ℝ) be the Heisenberg group. Let us consider the Lie group

$$G = \widetilde{\operatorname{SL}}(2, \mathbb{R}) \ltimes \operatorname{H}(\mathbb{R})$$

and let μ be the Haar measure on G, and let Γ be a discrete subgroup of G.

►
$$\widetilde{\operatorname{SL}}(2,\mathbb{R}) \simeq \mathfrak{H} \times \mathbb{R}$$
. Let $\Gamma_0 = \left\langle \left(\begin{array}{cc} 1 & 2 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array} \right) \right\rangle$.
 $\Gamma = \widetilde{\Gamma}_0 \ltimes \dots$

► The geodesic flow Φ^s on \mathcal{M} is given by right multiplication by $\begin{pmatrix} e^{-s/2} & 0 \\ 0 & e^{s/2} \end{pmatrix}$, 0; **0**, 0 $\end{pmatrix} \in G$.

A function on $\mathcal{M}(1)$

Francesco Cellarosi On the Limit Curlicue Process for Theta Sums

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A function on $\mathcal{M}(1)$

For f ∈ L²(ℝ) and (z, φ) ∈ G, z = x + iy, (ξ, ζ) ∈ H(ℝ) define
 Θ_c(z, φ; ξ, ζ) :=

$$y^{\frac{1}{4}}e(\zeta - \frac{1}{2}\xi_{1}\xi_{2})\sum_{n\in\mathbb{Z}}f_{\phi}\left((n-\xi_{2})y^{\frac{1}{2}}\right)e\left(\frac{1}{2}(n-\xi_{2})^{2}x + n\xi_{1}\right),$$

· < @ > < 문 > < 문 > · · 문

A function on \mathcal{M} (1)

► For $f \in L^2(\mathbb{R})$ and $(z, \phi) \in G$, z = x + iy, $(\boldsymbol{\xi}, \zeta) \in H(\mathbb{R})$ define $\Theta_f(z, \phi; \boldsymbol{\xi}, \zeta) :=$ $y^{\frac{1}{4}} e(\zeta - \frac{1}{2}\xi_1\xi_2) \sum_{n \in \mathbb{Z}} f_{\phi}((n - \xi_2)y^{\frac{1}{2}}) e(\frac{1}{2}(n - \xi_2)^2x + n\xi_1)$,

where

$$f_{\phi}(w) := \begin{cases} e(-\sigma_{\phi}/8)f(w) & (\phi \equiv 0 \mod 2\pi) \\ e(-\sigma_{\phi}/8)f(-w) & (\phi \equiv \pi \mod 2\pi) \\ \frac{e(-\sigma_{\phi}/8)}{|\sin \phi|^{1/2}} \int_{\mathbb{R}} e\left(\frac{\frac{1}{2}(w^2 + w'^2)\cos \phi - ww'}{\sin \phi}\right) f(w') \mathrm{d}w' \\ & (\phi \not\equiv 0 \mod \pi) \end{cases}$$

$$\sigma_\phi := egin{cases} 2
u, & ext{if } \phi =
u\pi, \
u \in \mathbb{Z}; \ 2
u+1, & ext{if }
u\pi < \phi < (
u+1)\pi, \
u \in \mathbb{Z}. \end{cases}$$

米部 シネヨシネヨシ 三日

同 と く ヨ と く ヨ と

The function Θ_f is Γ-invariant ⇒ it is a well defined function on M = Γ\G.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

- The function Θ_f is Γ-invariant ⇒ it is a well defined function on M = Γ\G.
- The function Θ_f is unbounded in 2 of the 3 cusps of \mathcal{M} .

伺 とう ヨン うちょう

- The function Θ_f is Γ-invariant ⇒ it is a well defined function on M = Γ\G.
- The function Θ_f is unbounded in 2 of the 3 cusps of \mathcal{M} .
- We are interested in Θ_{χ} , where $\chi = 1_{(0,1)}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ► The function Θ_f is Γ -invariant \Rightarrow it is a well defined function on $\mathcal{M} = \Gamma \setminus G$.
- The function Θ_f is unbounded in 2 of the 3 cusps of \mathcal{M} .
- We are interested in Θ_{χ} , where $\chi = 1_{(0,1)}$.
- \blacktriangleright The limit curlicue process for $\beta \notin \mathbb{Q}$ can be described as

$$[0,1]
i t \longmapsto \gamma_g(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_\chi(g \Phi^s), \quad s = 2 \textit{logt}, \quad g \in \mathcal{M},$$

where $g \in \mathcal{M}$ is $\overline{\mu}$ -random. For $\beta = 0$ we have

$$[0,1]
i t \longmapsto \gamma_g(t) = rac{\sqrt{t}}{\mu(\mathcal{M}_0)} \Theta_\chi(g \Phi^s), \quad s = 2 \textit{logt}, \quad g \in \mathcal{M}_0.$$

伺下 イヨト イヨト

The limit curlicue process

$$\gamma_g(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_\chi(g \Phi^s), \quad s = 2 logt.$$

æ

$$\gamma_{g}(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_{\chi}(g \Phi^{s}), \hspace{1em} s = 2 \textit{logt}.$$

 The regularity of the curve γ_g is determined by the regularity of Θ_χ in the flow direction.

(4) (5) (4) (5) (4)

$$\gamma_{g}(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_{\chi}(g \Phi^{s}), \hspace{1em} s = 2 ext{logt}.$$

- The regularity of the curve γ_g is determined by the regularity of Θ_χ in the flow direction.
- Large values of |γ_g(t)| come from excursions of the gΦ^s in the cusps of *M*.

(周) (王) (王)

$$\gamma_{m{g}}(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_{\chi}(m{g} \Phi^s), \hspace{1em} s = 2 ext{logt}.$$

- The regularity of the curve γ_g is determined by the regularity of Θ_χ in the flow direction.
- Large values of |γ_g(t)| come from excursions of the gΦ^s in the cusps of M.

...

伺 と く き と く き と

$$\gamma_g(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_\chi(g \Phi^s), \quad s = 2 logt.$$

The distribution of $\gamma_g(t) \in \mathbb{C}$ is not Gaussian (**Thms C,D**).

伺 とう ヨン うちょう

$$\gamma_{g}(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_{\chi}(g \Phi^{s}), \hspace{1cm} s = 2 \textit{logt}.$$

The distribution of $\gamma_g(t) \in \mathbb{C}$ is not Gaussian (**Thms C,D**).

• We expect that for $\overline{\mu}$ -almost every $g \in G$

向下 イヨト イヨト

$$\gamma_{g}(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_{\chi}(g \Phi^{s}), \hspace{1cm} s = 2 logt.$$

The distribution of $\gamma_g(t) \in \mathbb{C}$ is not Gaussian (**Thms C,D**).

- We expect that for $\overline{\mu}$ -almost every $g \in G$
- (regularity) the curve γ_g is Hölder-continuous with exponent ρ , $0 < \rho < \frac{1}{2}$;

向下 イヨト イヨト

$$\gamma_{g}(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_{\chi}(g \Phi^{s}), \hspace{1cm} s = 2 \textit{logt}.$$

The distribution of $\gamma_g(t) \in \mathbb{C}$ is not Gaussian (**Thms C,D**).

- We expect that for $\overline{\mu}$ -almost every $g \in G$
- (regularity) the curve γ_g is Hölder-continuous with exponent ρ, 0 < ρ < ¹/₂;
- (self-similarity) $(\gamma_g(t_0 + h) \gamma_g(t_0))h^{-1/2}$ and $\gamma_g(h)$ have the same distribution;

伺下 イヨト イヨト

$$\gamma_{g}(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_{\chi}(g \Phi^{s}), \hspace{1cm} s = 2 \textit{logt}.$$

The distribution of $\gamma_g(t) \in \mathbb{C}$ is not Gaussian (**Thms C,D**).

- We expect that for $\overline{\mu}$ -almost every $g \in G$
- (regularity) the curve γ_g is Hölder-continuous with exponent ρ, 0 < ρ < ¹/₂;
- ► (self-similarity) (γ_g(t₀ + h) γ_g(t₀))h^{-1/2} and γ_g(h) have the same distribution;
- ► (time inversion) tγ_g(1/t) and γ_g(t) have the same distribution.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\gamma_g(t) = rac{\sqrt{t}}{\mu(\mathcal{M})} \Theta_\chi(g \Phi^s), \quad s = 2 logt.$$

The distribution of $\gamma_g(t) \in \mathbb{C}$ is not Gaussian (**Thms C,D**).

- We expect that for $\overline{\mu}$ -almost every $g \in G$
- (regularity) the curve γ_g is Hölder-continuous with exponent ρ, 0 < ρ < ¹/₂;
- (self-similarity) $(\gamma_g(t_0 + h) \gamma_g(t_0))h^{-1/2}$ and $\gamma_g(h)$ have the same distribution;
- ► (time inversion) tγ_g(1/t) and γ_g(t) have the same distribution.
- In other words: the curlicue process shares many properties with the Brownian motion, even if it has dependent increments and its finite dimensional distribution are not Gaussian.

Thank You!

<ロ> (四) (四) (三) (三) (三)