Periodic Lorentz gas
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One moving particle bounces off a periodic
array of fixed convex scatterers.

Shown above: the “infinite horizon” case
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“Finite horizon” case:
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Larger scatterers blocking the particle
from all sides.

No infinite corridors.



Symbols and notation

g(t) position of the particle at time t
v(t) velocity of the particle at time t

q, position of the particle at nth collision
v, velocity of the particle at nth collision



No external forces, finite horizon:

q(t) ~ N(O,D,t) as t>ee (asymptotically normal)
D, is diffusion matrix (integral of autocorrelations)
DAO = [ <V(t) V(0)>u dt
q, ~ N(O,Dy,n) as n->ee (asymptotically normal)
50 is diffusion matrix (infinite sum of autocorrelations)
D, =X <dq, dg,>.
LA)O = 7D, where 7 is the mean free path

Sinai & Bunimovich 1981



No external forces, infinite horizon:

q(t) ~ N(O,D,tlogt) as t>eo (superdiffusive)
D, is superdiffusion matrix
Chernov & Dolgopyat 2009
q, ~ N(O,bln log n) as n-ee (superdiffusive)
LA)l Is superdiffusion matrix

(finite sum of parameters of corridors)
Szasz & Varju 2007

D, = D, where 7 isthe mean free path



Lorentz gas with a constant external force

()

QDO ®

Particle (“electron”) is subject to an external

Force

o

(“electric”) field E =(g,0) directed horizontally
e>0 is small



Lorentz gas with external field:

Equations of motion
dg/dt =v dv/dt = E
Total energy (kinetic + potential) is preserved:
% v? - ex = const
Thus when the particle is driven by the field and x(t) grows,
then v(t) hasto grow, too: v? = O(x)
This is unrealistic for an actual electrical current.
Electrons are expected to travel at a linear rate, i.e. <x>=1Jt,

where J represents the current



Lorentz gas with a thermostat

Electrons move subject to a force and thermostat:
dg/dt =v dv/dt = E|- <E,v>v

e

Gaussian thermostat
(Moran & Hoover 1987)




Lorentz gas with a thermostat

Electrons move subject to a force and thermostat:
dg/dt =v dv/dt = E - <E,v>v

Now <v,v>=1 at all times, because <v, dv/dt>=0

In other words, the kinetic energy is kept constant.

The extra term prevents the electrons from speeding
(heating up) or slowing down (cooling down).

It keeps the temperature fixed. Hence its name:
thermostat.



Gaussian thermostat, finite horizon

Then q(t) ~ J t + N(O, D,(€)t)

(drift + diffusion)
The electrical current J, satisfies

J,= 0, E +o(g) (Ohm’s law) recall: € =|E|

Electrical conductivity o, satisfies

o, = %D, (Einstein relation)
D, is again the diffusion matrix (for the field-free process)

Dy€)=D, +0o(1) as €¢->0
Note: the current J, is not always parallel to the field E
(this is known as Hall effect in physics)

Chernov, Eyink, Lebowitz, Sinai 1993 and Chernov, Dolgopyat 2009



Gaussian thermostat, infinite horizon

Assume: the field E is not parallel to any infinite corridor
Then q(t) ~ J;t + N(O, D,(¢€)t)

(drift + diffusion)
The electrical current J, does not satisfy Ohm’s law:

J,= o, E |log €|+ O(g) recall: €=|E]|

Superconductivity coefficient o; satisfies

o, = V2D, (Einstein relation still holds)
D, is again the diffusion matrix (for the field-free process)

D,(e)=D, |loge| + O(1)

Chernov, Dolgopyat 2009



Back to Lorentz gas with external field

No thermostat is imposed anymore. Questions:

Describe asymptotic behavior of the position and
velocity of the particle as time t->ee.



Equivalent to Galton board

An upright board with a periodic array of fixed
pegs on which balls are rolling down bouncing
off the pegs

Introduced by Sir Francis
Galton (1822-1911)

Resembles a modern
pinball machine




Galtoi Bloaid




Difficulties:

Particle accelerates as it moves away

Phase space is not compact, invariant
measure is infinite

Initial distribution is concentrated in a
compact domain (say, 0<x,y<1)

Images of the initial measure escape to infinity
Dynamics is inhomogeneous in time and space

(speed increases, trajectory straightens)






For the Lorentz gas/Galton board with
a constant external field and finite horizon

Conjectures in physics literature 1979-2008 (based on
heuristic and empirical studies):

Position x(t) ~ t%3 Velocity v(t) ~ t1/3

Note: the electron travels at a slow (sublinear) rate.

The reason is: backscattering (“Fermi acceleration”)



Chernov & Dolgopyat 2009:

Average position x(t) does grow as t%3
Average velocity v(t) does grow as t/3

Rescaled position t 23x(t) has a limit
distribution

Rescaled velocity t-*3v(t) has a limit
distribution

Rescaled position converges to

an Ito diffusion process satisfying certain
Stochastic Differential Equations



Chernov & Dolgopyat 2009:

The limit stochastic process is recurrent
(comes back to x=0 infinitely many times).

The original trajectory x(t) is recurrent, too:
the particle’s coordinate returns to its initial
value x(0) infinitely many times with
probability one.

A surprising fact, but intuitively follows from
the invariance of an infinite measure



Lorentz gas with external field
and infinite horizon

This remains an open problem.

We (C&D) are currently working on it.
Our conjectures:

Position x(t) ~ (t log t)%?3
Velocity v(t) ~ (t log t)¥/3



The finite horizon Galton board was studied via
approximating it by the Lorentz gas with Gaussian
thermostat.

Both are eg—perturbations of the field-free (billiard)
dynamics, and they are g?—close to each other.

So knowing one, we can effectively study the other.



For the infinite horizon Galton board this
approach fails. Here is the reason:

The trajectories with and without Gaussian
thermostat are actually (2t3)—close to each other,
where t is the time between collisions.

In finite horizon, t=0(1), so we have g?—closeness

In infinite horizon, t=0(g?), so we only have
¢l’2—closeness, which is very poor.



So we introduce a new thermostatted model:

The particle moves under the constant field (along a
parabola, with its speed growing) between collisions,
but its energy is reset at each collision. We call this
thermostatted walls. By the way, this is a more

physically sensible thermostat
(Gaussian thermostat was criticized by many as unrealistic).

But it causes unforeseen and peculiar complications:

the dynamics ceases to be invertible.

* Some phases points may have more than one
preimage (indeterminate past).

 Some phase points may have no preimages at all
(no past).




To visualize the situation:
Let F: [>1 be a hyperbolic automorphism of a 2-torus.
Let T=M, U---U M, be a partition of T into domains
with piecewise smooth boundaries.
Let G: T->T be a map that is smooth on each M and its
restriction to M. is a C2-perturbation of the identity map
on M..
Then the composition FoG is a map that has strong
expansion and contraction, but the images of M, may
overlap and/or may leave uncovered gapsin [.
Such maps were studied recently by operator technique
Baladi & Gouézel 2009 and 2010



We (C&D) use standard pairs, Growth Lemma, and
Coupling Lemma to:

Prove the existence and uniqueness of a physically
observable (SRB-like) measure.

Establish exponential decay of correlations and limit
theorems.

We only work with general unstable, i.e., expanding
curves (we do not need unstable manifolds) and only
iterate them forward.



Final results for the Lorentz gas with
thermostatted walls:

All the limit theorems about the drift,
(super)diffusion, (super)conductivity, etc.,
previously proven for the Gaussian thermostat
are now proven for the thermostatted walls.

Both in finite and infinite horizon.

Chernov & Dolgopyat 2010
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