Mathematical Neuroscience: from neurons to networks

School of Mathematical Sciences

Neurons: pyramidal cells

Hodgkin and Huxley

(1950s) express (and subsequently fit) the dynamics of gating variables (representing membrane channels) using the mathematical language of nonlinear ODEs.

Active membrane models

$$C\frac{\mathrm{d}\nu}{\mathrm{d}t} = -\sum_{k} g_{k} m_{k}^{p_{k}} h_{k}^{q_{k}} (\nu - \nu_{k}) + I$$

$$p_{k}, q_{k} \in \mathbb{Z}$$
Extracellular Medium
$$C = \begin{bmatrix} g_{n}(t, V) \\ g_{n}(t, V) \\ E_{n} \\ T \end{bmatrix} \begin{bmatrix} g_{L} \\ g_{L} \\ g_{L} \\ F_{L} \\ T \end{bmatrix} I_{p}$$

v - membrane potential $v_k - reversal potentials$ $m_k, h_k - gating variables$

$$g_k$$
 – conductances

$$\frac{\mathrm{d} X}{\mathrm{d} t} = \frac{X_\infty(\nu) - X}{\tau_x(\nu)}$$

Method of equivalent potentials gives f and g in terms of HH model - Abbott and Kepler 1990

Cortical model (slow firing)

C

Morris-Lecar model (slow firing) (v, w)

Originally a model of the barnacle giant muscle fiber

$$\mathsf{Freq} \sim -\frac{1}{\ln(\mathrm{I}-\mathrm{I_c})}$$

Phase Response Curve (PRC)

A **PRC** tabulates the transient change in the cycle period of an oscillator induced by a perturbation as a function of the phase at which it is received.

$$\mathbf{Q} = \nabla_{\mathsf{Z}} \boldsymbol{\theta}$$

Isochrons as leaves of the stable manifold of a hyperbolic limit cycle

Call the orbit z = Z(t) where $\dot{z} = F(z)$

Introduce a phase (isochronal coordinates) θ

 $\frac{\mathrm{d}Q}{\mathrm{d}t} = D(t)Q, \qquad D(t) = -DF^{\mathsf{T}}(Z(t))$ $\nabla_{Z(0)} \cdot F(Z(0)) = \frac{1}{\mathsf{T}} \text{ and } Q(t) = Q(t+\mathsf{T})$ $\dot{\theta} = \frac{1}{\mathsf{T}}$

 $\dot{z}_i = F(z_i) + \varepsilon G_i(z_1, \dots, z_N) \quad \mbox{Uncoupled system has an} \\ \mbox{exponentially stable limit cycle γ_i}$

Direct product of hyperbolic limit cycles is a normally hyperbolic invariant manifold

$$\dot{\theta}_{i} = \frac{1}{T} + \varepsilon \left\langle Q(\theta_{i}), G_{i}(\Gamma(\theta)) \right\rangle$$
PRC

Coupled oscillator networks

An example: gap junction coupling

Averaging gives $H(\theta) = \frac{1}{T} \int_{0}^{T} \langle Q(t), (v(t + \theta T) - v(t), 0) \rangle dt$

Kopell and Ermentrout

Stability of phase-locked states

Applications of weakly coupled oscillator theory to CPGs, robot control, ...

Biorobotics lab at EPFL <u>http://biorob.epfl.ch</u>/

Integrate-and-fire neurons

$$\frac{\mathrm{d}\nu}{\mathrm{d}t} = -\frac{\nu}{\tau} + A(t), \qquad t \in (\mathsf{T}^m, \mathsf{T}^{m+1})$$

subject to nonlinear reset

Periodic forcing gives p:q mode-locked states

Implicit map of firing times

Arnol'd tongue structure dominated by non-smooth bifurcations

CML - discrete time IF $V_{i}(n+1) = [\gamma V_{i}(n) + \varepsilon \sum_{j} W_{ij} a_{j}(n)] \Theta(1 - V_{i}(n))$ $a_{i}(n) = \Theta(V_{i}(n) - 1)$

Mexican hat interaction

Network firing maps

P C Bressloff and S Coombes 2000 Dynamics of strongly-coupled spiking neurons, Neural Computation, Vol 12, 91-129

Fits to data

Layer V cortical pyramidal cell

Badel et al., Journal of Neurophysiology, 99, 2010

S Coombes and M Zachariou 2009, in Coherent Behavior in Neuronal Networks (Ed. Rubin, Josic, Matias, Romo), Springer.

$$\mathfrak{a}(T^m) \to \mathfrak{a}(T^m) + g_a/\tau_a$$

Orbit and PRC in closed form (pwl system)

Gap jn network: asynchronous state time averages $\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} \nu(t + jT/N) = \frac{1}{T} \int_{0}^{T} \nu(t) dt \equiv \nu_{0}$ network averages

$$\dot{v} = |v| - \epsilon v + I - a + \epsilon v_0, \qquad \dot{a} = -a/\tau_a$$

advanced-retarded ode - self-consistent periodic solution

Stability and bifurcations

Books

Physica D Special Issue Mathematical Neuroscience Vol 239, May 2010

Mathematical Neuroscience: from neurons to networks

School of Mathematical Sciences

Brain and Cortex

Principal cells and interneurons

Santiago Ramón y Cajal 1900

Eugene Izhikevich 2008

Electroencephalogram (EEG) power spectrum

EEG

EEG records the activity of ~ 10^6 pyramidal neurons.

Population model

 $Qg_{jE} = f(E)$ $Qg_{jI} = f(I)$

Steady stateapproximation $E = E(g_{EE}, g_{EI})$ $I = I(g_{II}, g_{IE})$

 $\begin{array}{ll} Qg = f \\ f = f(\lbrace g \rbrace) \end{array} \qquad \begin{array}{ll} g = \eta \ast f \\ g = \eta \ast f \end{array}$

Alphoid chaos (10 D)

Spatially extended models $g = w \otimes \eta * f$

Simplest neural field model: Wilson-Cowan ('72), Amari ('77)

Turing instability analysis

E layer and I layer

$$e^{i\mathbf{k}\cdot\mathbf{r}}e^{\lambda t}$$

Continuous spectrum

$$\det\left(\mathcal{D}(k,\lambda)-I\right)=0$$

$$\left[\mathcal{D}(k,\lambda)\right]_{ab} = \widetilde{\eta}_{ab}(\lambda)G_{ab}(k,-i\lambda)\gamma_{b}$$

 $\widetilde{\eta} = \mathsf{LT} \ \eta \qquad \qquad \mathsf{G} = \mathsf{F}\mathsf{LT} \ w(r)\delta(t-r/\nu) \qquad \qquad \gamma = \mathsf{f}'(\mathsf{ss})$

S Coombes et al., PRE, 76, 05190 (2007)

Amplitude Equations (one D)

Coupled mean-field Ginzburg–Landau equations describing a Turing–Hopf bifurcation with modulation group velocity of O(1).

$$\frac{\partial A_1}{\partial \tau} = A_1(a+b|A_1|^2 + c\langle |A_2|^2 \rangle) + d\frac{\partial^2 A_1}{\partial \xi_+^2}$$
$$\frac{\partial A_2}{\partial \tau} = A_2(a+b|A_2|^2 + c\langle |A_1|^2 \rangle) + d\frac{\partial^2 A_2}{\partial \xi_-^2}$$

Benjamin-Feir (BF)

BF-Eckhaus instability

Coefficients in terms of integral transforms of w and η .

Applications to co-registered EEG/fMRI

Bojak, I., Oostendorp, T. F., Reid, A. T., Kotter, R., 2009. Realistic mean field forward predictions for the integration of co-registered EEG/fMRI. BMC Neuroscience 10, L2.

Stability

Examine eigenspectrum of the linearization about a solu Solutions of form $u(x)e^{\lambda t}$ satisfy $\mathcal{L}u(x) = u(x)$

$$\mathcal{L}\mathfrak{u}(x) = \widetilde{\eta}(\lambda) \int_{-\infty}^{\infty} dy \ w(x - y)f'(q(y) - h)\mathfrak{u}(y)$$

For Heaviside firing rate

$$f'(q(x)) = \frac{\delta(x)}{|q'(0)|} + \frac{\delta(x - \Delta)}{|q'(\Delta)|}$$

SO

$$u(x) = \frac{\widetilde{\eta}(\lambda)}{|w(0) - w(\Delta)|} [w(x)u(0) + w(x - \Delta)u(\Delta)]$$

System of linear equations for perturbations at threshold

$$\begin{bmatrix} u(0) \\ u(\Delta) \end{bmatrix} = \mathcal{A}(\lambda) \begin{bmatrix} u(0) \\ u(\Delta) \end{bmatrix}, \qquad \mathcal{A}(\lambda) = \frac{\widetilde{\eta}(\lambda)}{|w(0) - w(\Delta)|} \begin{bmatrix} w(0) & w(\Delta) \\ w(\Delta) & w(0) \end{bmatrix}$$

Non trivial solution if $\mathcal{E}(\lambda) = \det(\mathcal{A}(\lambda) - I) = 0$

Solutions stable if Re $\lambda < 0$

Evans function for integral neural field equation

S Coombes and M R Owen (2004) Evans functions for integral neural field equations with Heaviside firing rate function, SIAM Journal on Applied Dynamical Systems, Vol 34, 574-600.

Predictions of Evans function

time = 2.000

M R Owen, C R Laing and S Coombes 2007 Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities, New Journal of Physics, Vol 9, 378

Threshold accommodation

Hill (1936), "... the threshold rises when the *local potential* is maintained ... and reverts gradually to its original value when the nerve is allowed to rest."

Bump Stability I: $\eta(t) = \alpha^2 t e^{-\alpha t}$

Low κ instability on Re axis (increasing α)

Bump Stability II High κ instability on Im axis (increasing α) gives a breather

Summary of Bump instabilities

Exotic Dynamics

... including asymmetric breathers, multiple bumps, multiple pulses, periodic traveling waves, and bump-splitting instabilities that appear to lead to spatio-temporal chaos.

S Coombes and M R Owen: Bumps, breathers and waves in a neural network with spike frequency adaptation. PRL, 94, 148102, (2005).

Splitting and scattering

Auto/dispersive solitons as seen in coupled cubic complex Ginzburg-Landau systems and three component reaction-diffusion systems.

Further Challenges

Default mode network and ultra slow coherent oscillations

Nikola Venkov (Notts)

In collaboration with

Gabriel Lord (Heriot-Watt) Yulia Timofeeva (Warwick)

David Liley (Melbourne)

EPSRC Engineering and Physical Sciences Research Council

Markus Owen (Notts)

Ingo Bojak (Nijmegen)

