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•  The IPCC process: results and further questions"
•  Natural climate variability as a source of uncertainties"

–  sensitivity to initial data  error growth"
–  sensitivity to model formulation  see below!"

•  Uncertainties and how to fix them"
–  structural in/stability"
–  random dynamical systems (RDS)"

•  Two or more illustrative examples"
–  Arnolʼd tongues and a ʻʻFrench gardenʼʼ"
–  the Lorenz system"
–  an ENSO “toy” model "

•  Linear response theory and climate sensitivity"
•  Conclusions, work in progress and references"





Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …



Temperatures rise: 
•  What about impacts? 
•  How to adapt? 

Source : IPCC (2007), 
AR4, WGI, SPM  

The answer, my friend, 
is blowing in the wind, 
i.e., it depends on the  
accuracy and reliability 
of the forecast … 



It’s gotta do with us, at 
least a bit, ain’t it? 

But just how much? 

IPCC (2007)
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The uncertainties 
might be intrinsic, 

rather than mere
“tuning problems”

If so, maybe
stochastic structural 
stability could help!

The DDS dream of structural stability (from Abraham  & Marsden, 1978)

Might fit in nicely with
     recent taste for 
“stochastic 
     parameterizations” 



So whatSo what’’s it s it gonna gonna be like, by 2100?be like, by 2100?



Non-autonomous Dynamical Systems

A linear example as a paradigm
Let us first start with a very difficult problem:

Study the “dynamics" of ẋ = −αx + σt , α, σ > 0. (1)

First remarks:

The system ẋ = −αx , i.e. the autonomous part of (1), is dissipative.
All the solutions of ẋ = −αx , converge towards 0 as t → +∞.

Is it the case for (1)? Certainly not!
The autonomous part is forced; we even introduce an infinite energy
over an infinite horizon:

R +∞
0 t dt = +∞!

Forward attraction seems to be ill adapted to time-dependent forcing.

Goal:

Find a concept of attraction such that:

(i) It is compatible with the forward concept, when there is no forcing,

(ii) It provides a way to assess the effect of dissipation in some sense.

For that let’s do some computations...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Non-autonomous Dynamical Systems

Commentaries
We’ve just shown that:

|x(t , s; x0)− a(t)| −→
s→−∞

0 ; for every t fixed,

all initial data x0, with a(t) = σ
α
(t − 1/α).

We’ve just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

What does it means physically?
The pullback attractor provides a way to assess an asymptotic regime
at time t — the time at which we observe the system — for a system
starting to evolve from the remote past s, s << t .

Thus, this asymptotic regime evolves with time: it is a dynamical object.

The effect of dissipation is now viewed via this dynamical object and not
a static one, as a strange attractor does for autonomous systems.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Random Dynamical Systems - RDS theory

This theory is a combination of measure (probability) theory
and dynamical systems developed by the “Bremen group"
(L.Arnold, 1998). It allows one to treat Stochastic Differential
Equations (SDEs), and more general systems driven by some
“noise," as flows .

Setting:

(i) A phase space X . Example : Rn.

(ii) A probability space (Ω,F , P). Example : The Wiener space
Ω = C0(R; Rn) with Wiener measure P = γ.

(iii) A model of the noise θ(t) : Ω → Ω that preserves the
measure P, i.e. θ(t)P = P; θ is called the driving system.
Example : W (t , θ(s)ω) = W (t + s, ω)−W (s, ω); it starts
the noise at s instead of t = 0.

(iv) A mapping ϕ : R× Ω× X → X with the cocycle property.
Example : The solution of an SDE.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Random Dynamical Systems - A geometric view of
SDEs

ϕ is a random dynamical system (RDS)

Θ(t)(x , ω) = (θ(t)ω, ϕ(t , ω)x) is a flow on the bundle

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Random Dynamical Systems - Random attractor

A random attractor A(ω) is both invariant and “pullback"
attracting:
(a) Invariant : ϕ(t , ω)A(ω) = A(θ(t)ω).
(b) Attracting : ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0

a.s.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Stochastic equivalence - Toward a robust classification

A tool for classification: stochastic equivalence

Stochastic equivalence: two cocycles ϕ1(t , ω) and ϕ2(t , ω)
are conjugated iff there exists a random
homeomorphism h ∈ Homeo(X ) and an invariant set Ω̃ of
full P-measure (w.r.t. θ) such that h(ω)(0) = 0 and:

ϕ1(t , ω) = h(θ(t)ω)−1 ◦ ϕ2(t , ω) ◦ h(ω); (2)

h is also called cohomology of ϕ1 and ϕ2. It is a random
change of variables !

Motivation: We would like to measure quantitatively as well
as quantitatively the difference between climate models.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Stochastic equivalence - Could noise help the
classification?

As the noise variance tends to zero and/or the parametrizations are
switched off, one recovers the structural instability, as a “granularity"
of model space. For nonzero variance, the random attractor {A(ω)}
associated with several GCMs might fall into larger and larger classes
as the noise level increases.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Investigation of these ideas on a family of dynamical
toy systems - Theoretical and numerical results

V. Arnold’s family of diffeomorphisms

We want to perform a classification in terms of stochastic
equivalence.

Our first theoretical laboratory is Arnold’s family of
diffeomorphisms of the circle:

xn+1 = FΩ,ε(xn) := xn + Ω− ε sin(2πxn) mod 1

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Which paradigm is represented by this family?
Why this family?

Frequency-locking phenomena & Devil’s staircase

Topological classification of Arnold’s family {FΩ,ε}:

Countable regions of structural stability,

Uncountable structurally unstable systems with non-zero
Lebesgue measure!

Two types of attractors:

Periodic orbits in the circle.

The whole circle.

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Arnold’s tongues and Devil’s staircase

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Effect of the noise on topological classification?

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Extension of the paradigm - Devil’s quarry

Short description of the deterministic model

Dynamics on a 2-D torus:

xn+1 = xn + Ω1 − ε sin(2πyn), mod 1
yn+1 = yn + Ω2 − ε sin(2πxn) mod 1

Web of resonances & chaos:
- Partial resonance (Ω1,Ω2 are rational and there is one
rational relation m1Ω1 + m2Ω2 = k ∈ Z∗ with
(m1, m2) ∈ Z∗ × Z∗)
- Full resonance
- Chaos with possibly multiple attractors

A more realistic paradigm of observed dynamics in the
geosciences, and more...

What is the effect of noise in such a context?

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



A French garden near the castle of La Roche-Guyon

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Devil’s quarry for a coupling parameter ε = 0.15:
a web of resonances

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Effect of the noise on Devil’s quarry

Michael Ghil, Mickaël D. Chekroun, Eric Simonnet, Ilya Zaliapin



Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

A snapshot of the RA, A(ω), computed at a fixed time t and for the
same realization ω; it is made up of points transported by the stochastic
flow, from the remote past t − T , T >> 1.

We use small multiplicative noise in the deterministic Lorenz model,
with the classical parameter values b = 8/3, σ = 10, and r = 28.

Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Disintegration of the measure supported by the Lorenz R.A.

We can compute the probability measure on the R.A. at some fixed time
t . We show a “projection”,

R
µω(x , y , z)dy , with multiplicative noise:

dxi=Lorenz(x1, x2, x3)dt + α xidWt ; i ∈ {1, 2, 3}.
10 million of initial points have been used for this picture!

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Still 1 Billion I.D., and α = 0.3.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Still 1 Billion I.D., and α = 0.5. Another one?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Here α = 0.4. The sample measure is approximated for another
realization of the noise, starting from 8 billion I.D.

Now more serious stuff is coming...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Disintegrations of the measure evolve with time.

Recall that these disintegrated measures are the frozen
statistics at a time t for a realization ω.

How do these frozen statistics evolve with time?

Action!

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Applications to a non-linear stochastic El Niño model

Simonnet, C. and Ghil, 2008

Timmerman & Jin (Geophys. Res. Lett., 2002) have derived the following
low-order, tropical-atmosphere–ocean model. The model has three variables:
thermocline depth anomaly h, and
SSTs T1 and T2 in the western and eastern basin.

Ṫ1 = −α(T1 − Tr )− 2εu
L (T2 − T1),

Ṫ2 = −α(T2 − Tr )− w
Hm

(T2 − Tsub),

ḣ = r(−h − bLτ/2).

The related diagnostic equations are:

Tsub = Tr − Tr−Tr0
2 [1− tanh(H + h2 − z0)/h∗]

τ = a
β
(T1 − T2)[ξt − 1].

τ : the wind stress anomalies, w = −βτ/Hm: the equatorial upwelling.

u = βLτ/2: the zonal advection, Tsub: the subsurface temperature.

Wind stress bursts are modeled as white noise ξt of variance σ,
and ε measures the strength of the zonal advection.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



The random attractors: the frozen statistics

Random Shil’nikov horseshoes

Horseshoes can be noise-excited,
left: a weakly-perturbed limit cycle, right: the same with larger noise.

Golden: most frequently-visited areas; white ’plus’ sign: most visited.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



An episode in the random’s attractor life

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Letʼs say CO2 doubles:"
"How will “climate” change?"

    Ghil (Encycl. Global Environmental  "
    Change, 2002)"

2. Climate is purely periodic;"
    if so, mean temperature will"
    (maybe) shift gradually to its"
    new equilibrium value. "
    But how will the period, amplitude"
    and phase of the limit cycle change?"

1. Climate is in stable equilibrium"
    (fixed point); if so, mean temperature"
    will just shift gradually to its new "
    equilibrium value."

3. And how about some “real stuff” "
    now: chaotic + random?"



Property of µω for chaotic stochastic systems-I

The Sinai-Ruelle-Bowen (SRB) property
RDS theory offers a rigorous way to define random versions of stable
and unstable manifolds, via the Lyapunov spectrum, the Oseledec
multiplicative theorem, and a random version of the Hartman-Grobman
theorem.

When the sample measures µω of an RDS have absolutely continuous
conditional measures on the random unstable manifolds, then µω is
called a random SRB measure.

If the sample measure of an RDS ϕ is SRB, then its a “physical"
measure in the sense that:

lim
s→−∞

1
t − s

Z t

s
G ◦ ϕ(s, θ−sω)x ds =

Z
A(θt ω)

G(x)µθt ω(dx), (3)

for almost every x ∈ X (in the Lebesgue sense), and for every
continuous observable G : X → R.

The measure µω is also the image of the Lebesgue measure under the
stochastic flow ϕ: for each region of A(ω), it gives the probability to end
up on that region, when starting from a volume.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Property of µω for chaotic stochastic systems-II

A remarkable theorem of Ledrappier and Young (1988)
Ledrappier and Young have proved that, that if the stationary solution, ρ,
of the Fokker-Planck equation associated to an SDE presenting a
Lyapunov exponent > 0, has a density w.r.t. the Lebesgue measure,
then:

µω is a random SRB measure.

The domain of application of this theorem is fairly general and shows
that a large class of stochastic systems exhibiting a Lyapunov exponent
> 0, support a random SRB measure.

Furthermore, we have the important relation:

E(µ•) = ρ, (4)

the stationary solution of the Fokker-Planck equation, when this last one
is unique.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Mathematics of climate sensitivity-I

The Ruelle response formula
Physically, the challenge is to find the trade-off between the physics
present in the model and the stochastic parameterizations of the
missing physics.
From a mathematical point of view, climate sensitivity could be related
to sensitivity of SRB measures.

The thermodynamic formalism à la Ruelle, in the RDS context, helps to
understand the response of systems out-of-equilibrium, to changes in
the parameterizations (Kifer, Liu, Gundlach).

The Ruelle response formula: Given an SRB measure µ of an
autonomous chaotic system ẋ = f (x), an observable G : X → R, and a
smooth time-dependent perturbation Xt , then the time-dependent
variations δtµ, of µ is given by:

δtµ(G) =

Z t

−∞
dτ

Z
µ(dx)Xτ (x) · ∇x(G ◦ ϕt−τ (x)),

where ϕt is the flow of the unperturbed system ẋ = f (x).

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Mathematics of climate sensitivity-II

The susceptibility function
In the case Xt(x) = φ(t)X (x), the Ruelle response formula can be
written:

δtµ(G) =

Z
dt ′κ(t − t ′)φ(t ′),

where κ is called the response function. The Fourier transform κ̂ of the
response function is called the susceptibility function.

In this case ˆδtµ(G)(ξ) = κ̂(ξ)φ̂(ξ) and since the r.h.s. is a product, there
are no frequencies in the linear response that are not present in the
signal.

In general, the situation can be more complicated and the theory gives
the following criteria of high-sensitivity:

C: Poles of the susceptibility function κ̂(ξ) in the upper-half plane
⇒ High sensitivity of the systems response function κ(t).

RDS theory offers a path for extending this criteria when random
perturbations are considered.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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Summary!
•  A change of paradigm for open, non-autonomous systems"
•  Random attractors are (i) spectacular, (ii) useful, and "
"(iii) just starting to be explored for climate applications."

Work in progress!
•  Study the effect of specific stochastic parametrizations "
"on model robustness."

•  Applications to intermediate models and GCMs."
•  Implications for climate sensitivity."
•  Implications for predictability?"
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Disintegration of the measure supported by the R.A.

Another proj. of the disintegrated measure, more “friendly"

The next slides are similar, with different noise level α
and more I.D....

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

1 Billion I.D., and a different color palette!

Intensity is α = 0.2.

Do you want different noise intensities?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



♥ Feed the world today 
or…  

♥ … keep today’s 
climate for tomorrow? 

Davos, Feb. 2008, photos by TIME Magazine, 11 Feb. ‘08; 
see also Hillerbrand & Ghil, Physica D, 2008, 237, 2132–2138, 
doi:10.1016/j.physd.2008.02.015 . 



The The Biofuel Biofuel MythMyth
 Fine illustration of

the moral dilemmas (*).
 Conclusion:

“festina lentae,”
as the Romans (**)

    used to say..

(**) ~ Han dynasty

(*) Hillerbrand & Ghil, Physica D, 2008,
doi:10.1016/j.physd.2008.02.015,
available on line.
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