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Motivation

The climate system is highly nonlinear and quite complex.

Its major components — the atmosphere, oceans, ice sheets —
evolve on many space and time scales.

Its predictive understanding has to rely on the system’s
physical, chemical and biological medeling,

but also on the mathematical analysis of the models
thus obtained.

The hierarchical modeling approach allows one to

give proper weight to the understanding provided by the
models vs. their realism, respectively.

Back-and-forth between “toy” (conceptual) and detailed
(“realistic”) models, and between models and data.

Such an approach facilitates the evaluation of forecasts
(prognostications?) based on these models.
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* The IPCC process: results and further questions

* Natural climate variability as a source of uncertainties
— sensitivity to initial data =» error growth
— sensitivity to model formulation =» see below!

« Uncertainties and how to fix them
— structural in/stability
— random dynamical systems (RDS)

« Two or more illustrative examples

— Arnol’d tongues and a “French garden”
— the Lorenz system
— an ENSO “toy” model

* Linear response theory and climate sensitivity
« Conclusions, work in progress and references



CO2 IN THE ATMOSPHERE
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Natural variability introduces additional complexity into
the anthropogenic climate change problem

The most common interpretation of observations and
GCM simulations of climate change is still in terms
of a scalar, linear Ordinary Differential Equation (ODE)

k= Z k. — feedbacks (+ve and -ve)

Uniforiunztely, tnings
|

c‘:—f=—kT+Q Q=) 0O, —sources & sinks
=00
Try to achieve better -
interpretation of, and .
agreement between, T
models ... ST ST T o el

Linear response to CO, vs. observed change in T

, , _ — Hence, we need to consider instead a system of nonlinear
Ghil, M., 2002: Natural climate variability, Partial Differential Equations (PDEs), with parameters

in Encyclopedia of Global Environmental and multiplicative, as well as additive forcing
Change, T. Munn (Ed.), Vol. 1, Wiley (deterministic + stochastic)

dX
_=N(X9t’usﬂ)
dt




Global warming and
its socio-economic impacts

Mutti-MopEL AVERAGES AND AsSESSED RANGES FOR SURFACE WARMING

Temperatures rise: W
« What about impacts? 4 — Z%iéﬁ?ﬁifé‘é’f“"‘ d
6 | —20th centu i
* How to adapt? 2 ' -
g I
The answer, my friend, . EE
is blowing in the wind, £ g
i.e., it depends on the 3
accuracy and reliability 7 A
of the forecast ... A L ko
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Figure SPM.5. Solid finas are multi-model giobal averages of surface warming (relative to 1980-1999) for the scenanios A2, A1B and B1,

S O ur Ce ; I P C C (2 O O 7) , shown as continuations of the 20th century simulations. Shading denotes the +1 standard deviation range of individual model annual

avarages. The orange line is for the experiment wheare concentrations were held constant at year 2000 values. The gray bars at right

A R 4 WG I S P M indicate the bast astimate (solid line within each bar) and the likely range assessed for the six SRES marker scanarios. The assessment of
J J the best astimate and likely ranges in the gray bars includas the AOGCMSs in the left part of the figure, as well as rasults fom a hierarchy

of indapandant models and obsearvational constraints. {Figuras 10.4 and 10.29)



GHGs rise!

It's gotta do with us, at
least a bit, ain’t it?

But just how much?

IPCC (2007)
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* Natural climate variability as a source of uncertainties
— sensitivity to initial data =» error growth
— sensitivity to model formulation =» see below!



Deterministic predictions

Verification

Ensemble forecast of Lothar (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours
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 Uncertainties and how to fix them

— structural in/stability
— random dynamical systems (RDS)



Can we, nonlinear dynamicists, help?

The uncertainties
might be intrinsic,

rather than mere o o o BT
“tuning problems” i L

If so, maybe
stochastic structural
stability could help!

Might fit in nicely with
recent taste for

“stochastic
parameterizations”

Figure 7.5-1. The three towers of differentiable dynamics.

Tte DDS dneam of stractunal stability (from Abraham & Marsden, 1978)



So what’s it gonna be like, by 21007

Table SPM.2. Recant trands, ssssasmeant of human influence on the trend and projections for extreme westher events for which thers
2 an obsanved lste-20t0h cantwry trend. (Tablee 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2-11.9}

Likelihood of future trends

based on pcbom for
21st century ualng

SRES scenarios
days and nights over Very Ikely© Likalyd Virtually certaind
moet land areas
Warmer and more fraquent
hot days and nights over Very Ikealy® Liely fnights) Virtually certaind
moet land areas
Warm spella/heat waves.
Frequency incraases over Liely More ikely than not' Very lkely
moet land areas
Heavy precipitation events.
total mial(:om houyﬁ:fq Licely More licely than not! Very ikely
increases over most areas
Area affected by Likedy in many
droughts increasse regions since 19708 More liely than not Likely
lmemotlopcd cydona Likedy in some
activity increases regions since 1970 More liely than notf Likely
Increased incidence of
extrame high s=a level Liely Move likely than not'h Liely




Non-autonomous Dynamical Systems

A linear example as a paradigm

Let us first start with a very difficult problem:
Study the “dynamics" of X = —ax +ot, a,0 > 0. 1)
First remarks:

@ The system x = —ax, i.e. the autonomous part of (1), is dissipative.
All the solutions of x = —ax, converge towards 0 ast — +oo.

@ Is it the case for (1)?

)

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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A linear example as a paradigm

Let us first start with a very difficult problem:
Study the “dynamics" of X = —ax +ot, a,0 > 0. 1)
First remarks:
@ The system x = —ax, i.e. the autonomous part of (1), is dissipative.

All the solutions of x = —ax, converge towards 0 ast — +oo.

@ Is it the case for (1)? Certainly not!
The autonomous part is forced; we even introduce an infinite energy
over an infinite horizon: fo‘ “tdt = +oo!
Forward attraction seems to be ill adapted to time-dependent forcing.
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Non-autonomous Dynamical Systems

A linear example as a paradigm

Let us first start with a very difficult problem:
Study the “dynamics" of X = —ax +ot, a,0 > 0. 1)
First remarks:

@ The system x = —ax, i.e. the autonomous part of (1), is dissipative.
All the solutions of x = —ax, converge towards 0 ast — +oo.

@ Is it the case for (1)? Certainly not!
The autonomous part is forced; we even introduce an infinite energy
over an infinite horizon: fo“’ot dt = 400!

Forward attraction seems to be ill adapted to time-dependent forcing.

Find a concept of attraction such that:
(i) Itis compatible with the forward concept, when there is no forcing,
(i) It provides a way to assess the effect of dissipation in some sense.

\ N

For that let's do some computations...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Non-autonomous Dynamical Systems

Commentaries

@ We've just shown that:

[X(t,s;%0) —a(t)] — 0 ;foreveryt fixed,
S——0o0

all initial data xo, with a(t) = Z(t — 1/a).
@ We've just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

@ What does it means physically?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Non-autonomous Dynamical Systems

Commentaries

@ We've just shown that:
[X(t,s;%0) —a(t)] — 0 ;foreveryt fixed,
S——0o0

all initial data xo, with a(t) = Z(t — 1/a).
@ We've just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).
@ What does it means physically?
The pullback attractor provides a way to assess an asymptotic regime

at time t — the time at which we observe the system — for a system
starting to evolve from the remote past s, s << t.

@ Thus, this asymptotic regime evolves with time: it is a dynamical object.

@ The effect of dissipation is now viewed via this dynamical object and not
a static one, as a strange attractor does for autonomous systems.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Random Dynamical Systems -

This theory is a combination of measure (probability) theory
and dynamical systems developed by the “Bremen group"
(L.Arnold, 1998). It allows one to treat Stochastic Differential
Equations (SDEs), and more general systems driven by some
“noise," as flows .

Setting:

(i) A phase space X. Example : R".

(i) A probability space (2, F,P). Example : The Wiener space
Q = Cp(R; R") with Wiener measure P = .

(i) A model of the noise 4(t) : Q — Q that preserves the
measure P, i.e. §(t)P = P; 0 is called the driving system.
Example : W (t,0(s)w) = W(t + s,w) — W(s,w); it starts
the noise at s instead of t = 0.

(iv) A mapping ¢ : R x Q x X — X with the cocycle property.
Example : The solution of an SDE.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Random Dynamical Systems -

{8(s+ thw} x X

dle property:
b tw)x =
it, 0(s)w) o (s,w)x

o
t)w
Q

@ ¢ is a random dynamical system (RDS)
@ O(t)(x,w) = (O(t)w, ¢(t,w)x) is a flow on the bundle

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Random Dynamical Systems -

A random attractor A(w) is both invariant and “pullback"

attracting:

(a) Invariant : ¢(t,w)A(w) = A(f(t)w).

(b) Attracting : VB C X, limi_, dist(¢(t, 8(—t)w)B, A(w)) =0
a.s.

Pullback attraction to A( )

BiO(-1,)w)

B(8(—t, o) {o}xX {BioxX

A ) L. wA(w )=A(B()w )
-
S e ———
B(—T o (0] At o Q
B(-Ty)w

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Stochastic equivalence -

A tool for classification: stochastic equivalence

@ Stochastic equivalence: two cocycles ¢4 (t,w) and ¢ (t,w)
are conjugated iff there exists a random
homeomorphism h € HomedX ) and an invariant set Q of
full P-measure (w.r.t. 8) such that h(w)(0) = 0 and:

p1(t,w) = h(«9(t)<.u)_1 o po(t,w) o h(w); (2)
h is also called cohomology of ¢1 and 5. It is a random
change of variables !

@ Motivation: We would like to measure quantitatively as well
as quantitatively the difference between climate models.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Stochastic equivalence -

As the noise variance tends to zero and/or the parametrizations are
switched off, one recovers the structural instability, as a “granularity"
of model space. For nonzero variance, the random attractor {A(w)}
associated with several GCMs might fall into larger and larger classes
as the noise level increases.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Outline

« Two or more illustrative examples
— Arnol’d tongues and a “French garden”
— the Lorenz system
— an ENSO “toy” model



Investigation of these ideas on a family of dynamical

toy systems -

V. Arnold’s family of diffeomorphisms

@ We want to perform a classification in terms of stochastic
equivalence.

@ Our first theoretical laboratory is Arnold’s family of
diffeomorphisms of the circle:

Xnt1 = Fac(Xn) :=Xn + Q —esin(2mx,) mod 1

LC appearing after Tlopf bif.

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



Which Is represented by this family?

Why this family?

@ Frequency-locking phenomena & Devil’'s staircase
@ Topological classification  of Arnold’s family {Fq . }:

e Countable regions of structural stability,

e Uncountable structurally unstable systems with non-zero
Lebesgue measure!

@ Two types of attractors:

@ Periodic orbits in the circle.

@ The whole circle.

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



Arnold’s tongues and Devil’'s staircase
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Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



Effect of the noise on topological classification?

c=0.05 ¢=0.10 0=0.15
! AR - {

f
19
|
NZ L
TR TR TR

@ o1 o0z @3 0+ 0§ 0

Effect of the noise on the PDF of Arnold’s tongue 1/3

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



Extension of the paradigm -

Short description of the deterministic model

@ Dynamics on a 2-D torus:

Xnt1 = Xn + Q1 —esin(2my,), mod 1
Ynt1 =Yn + Qo —esin(2nx,) mod 1

@ Web of resonances & chaos:
- Partial resonance (2, Q, are rational and there is one
rational relation m1Q; + myQ, = k € Z* with
(my,my) € Z* x Z*)
- Full resonance
- Chaos with possibly multiple attractors

@ A more realistic paradigm of observed dynamics in the
geosciences, and more...

@ What is the effect of noise in such a context?

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



A French garden near the castle of La Roche-Guyon

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



Devil’'s quarry for a coupling parameter ¢ = 0.1
a web of resonances

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, Ily:



Effect of the noise on Devil's quarry

Michael Ghil, Mickaél D. Chekroun, Eric Simonnet, llya Zaliapin



Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

20

-20

-30

40~
40

@ A snapshot of the RA, A(w), computed at a fixed time t and for the
same realization w; it is made up of points transported by the stochastic
flow, from the remote pastt — T, T >> 1.

@ We use small multiplicative noise in the deterministic Lorenz model,
with the classical parameter values b = 8/3, o = 10, and r = 28.

@ Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Disintegration of the measure supported by the R.A.

Disintegration of the measure supported by the Lorenz R.A.

=200 =15 =10; -5 0 5 10 15 20
X

@ We can compute the probability measure on the R.A. at some fixed time
t. We show a “projection”, [ u.(X,y, z)dy, with multiplicative noise:
dxi=Lorenz(xs, X2, X3)dt + o xidWys; i € {1,2,3}.

@ 10 million of initial points have been used for this picture!

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

@ Sitill 1 Billion I.D., and o = 0.3.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Disintegration of the measure supported by the R.A.

@ Still 1 Billion I.D., and o = 0.5. Another one?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Disintegration of the measure supported by the R.A.

@ Here a = 0.4. The sample measure is approximated for another
realization of the noise, starting from 8 billion I.D.

@ Now more serious stuff is coming...

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Disintegration of the measure supported by the R.A.

Disintegrations of the measure evolve with time.

@ Recall that these disintegrated measures are the frozen
statistics at a time t for a realization w.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Disintegrations of the measure evolve with time.

@ Recall that these disintegrated measures are the frozen
statistics at a time t for a realization w.

@ How do these frozen statistics evolve with time?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Disintegration of the measure supported by the R.A.

Disintegrations of the measure evolve with time.

@ Recall that these disintegrated measures are the frozen
statistics at a time t for a realization w.

@ How do these frozen statistics evolve with time?

@ Action!

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Simonnet, C. and Ghil, 2008

Timmerman & Jin (Geophys. Res. Lett., 2002) have derived the following
low-order, tropical-atmosphere—ocean model. The model has three variables:
thermocline depth anomaly h, and

SSTs T, and T, in the western and eastern basin.

-I:—l =—ao(T1 —Tr) — &4(T2. - Tu),
T, = —Oc(Tz — Tr) — %(Tz — Tsub)7

h =r(—h—bLr/2).

The related diagnostic equations are:

Tan =T — "=T0[1 —tanh(H + h, — 2o)/h"]
T = &(T-T)& -1l

@ 7: the wind stress anomalies, w = —37/Hmn: the equatorial upwelling.
@ u = BL7/2: the zonal advection, Tsp: the subsurface temperature.

Wind stress bursts are modeled as white noise & of variance o,
and ¢ measures the strength of the zonal advection.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Random Shil’nikov horseshoes

0=0.005 0=0.05

@ Horseshoes can be noise-excited,
left: a weakly-perturbed limit cycle, right: the same with larger noise.

@ Golden: most frequently-visited areas; white 'plus’ sign: most visited.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



B . S

1.6y 1.6y 1.6y
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* Linear response theory and climate sensitivity



Climate and Its Sensitivity

Let’s say CO, doubles:

How will “climate” change?

. Climate is in stable equilibrium

(fixed point); if so, mean temperature

will just shift gradually to its new
equilibrium value.

. Climate is purely periodic;
if so, mean temperature will
(maybe) shift gradually to its
new equilibrium value.

But how will the period, amplitude
and phase of the limit cycle change?

. And how about some “real stuff”
now: chaotic + random?

Ghil (Encycl. Global Environmental
Change, 2002)

a) Equilibrium sensitivity

T,
CcCO,

~ Y

b) Nonequilibrium sensitivity

T, 4
cO,
= = - - >
t
T, 4
coO,
v -
=t === -
t




Property of p,, for chaotic stochastic systems-I

The Sinai-Ruelle-Bowen (SRB) property

@ RDS theory offers a rigorous way to define random versions of stable
and unstable manifolds, via the Lyapunov spectrum, the Oseledec
multiplicative theorem, and a random version of the Hartman-Grobman
theorem.

@ When the sample measures ., of an RDS have absolutely continuous
conditional measures on the random unstable manifolds, then p, is
called a random SRB measure.

@ If the sample measure of an RDS ¢ is SRB, then its a “physical”
measure in the sense that:

t

lim —2— [ Gow(s,0_sw)x ds:/ G uew(dx),  (3)
S A(Grw)

S——ool — s

for almost every x € X (in the Lebesgue sense), and for every
continuous observable G : X — R.

@ The measure p,, is also the image of the Lebesgue measure under the
stochastic flow ¢: for each region of A(w), it gives the probability to end
up on that region, when starting from a volume.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Property of p,, for chaotic stochastic systems-Il

A remarkable theorem of Ledrappier and Young (1988)

@ Ledrappier and Young have proved that, that if the stationary solution, p,
of the Fokker-Planck equation associated to an SDE presenting a
Lyapunov exponent > 0, has a density w.r.t. the Lebesgue measure,
then:

L IS @ random SRB measure.

@ The domain of application of this theorem is fairly general and shows
that a large class of stochastic systems exhibiting a Lyapunov exponent
> 0, support a random SRB measure.

@ Furthermore, we have the important relation:

E(ue) = p, 4)

the stationary solution of the Fokker-Planck equation, when this last one
is unique.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity



Mathematics of climate sensitivity-|

The Ruelle response formula

@ Physically, the challenge is to find the trade-off between the physics
present in the model and the stochastic parameterizations of the
missing physics.

From a mathematical point of view, climate sensitivity could be related
to sensitivity of SRB measures.

@ The thermodynamic formalism a la Ruelle, in the RDS context, helps to
understand the response of systems out-of-equilibrium, to changes in
the parameterizations (Kifer, Liu, Gundlach).

@ The Ruelle response formula: Given an SRB measure y of an
autonomous chaotic system x = f(x), an observable G : X — R, and a
smooth time-dependent perturbation X;, then the time-dependent
variations diu, of u is given by:

e =/7I dT/p(dx)XT(x)-Vx(Gogpt,T(x)),

where ¢ is the flow of the unperturbed system x = f(x).

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Mathematics of climate sensitivity-II

The susceptibility function

@ In the case Xi(x) = ¢(t)X(x), the Ruelle response formula can be
written:

5iu(G) = / dt’s(t —t")e(t"),

where « is called the response function. The Fourier transform & of the
response function is called the susceptibility function.

@ In this case & u(G)(€) = #(€)d(€) and since the r.h.s. is a product, there
are no frequencies in the linear response that are not present in the
signal.

@ In general, the situation can be more complicated and the theory gives
the following criteria of high-sensitivity:
¢: Poles of the susceptibility function ~ &(€) in the upper-half plane
=- High sensitivity of the systems response function K(t).

@ RDS theory offers a path for extending this criteria when random
perturbations are considered.

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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« Conclusions, work in progress and references



Concluding remarks, | - RDS and RAs

Summary

A change of paradigm for open, non-autonomous systems
Random attractors are (i) spectacular, (ii) useful, and
(i) just starting to be explored for climate applications.

Work in progress

Study the effect of specific stochastic parametrizations
on model robustness.

Applications to intermediate models and GCMs.
Implications for climate sensitivity.

Implications for predictability?



Concluding remarks, Il — General

What do we know?

It’s getting warmer.
We do contribute to it.
So we should act as best we know and can!
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— Is it getting warmer ...
— Do we contribute to it ...
« How does the climate system (atmosphere, ocean, ice, etc.) really work?

« How does natural variability interact with anthropogenic forcing?



Concluding remarks, Il — General

What do we know?

* |t’s getting warmer.
« We do contribute to it.
« So we should act as best we know and can!

What do we know less well?
« By how much?
— Is it getting warmer ...
— Do we contribute to it ...
« How does the climate system (atmosphere, ocean, ice, etc.) really work?
« How does natural variability interact with anthropogenic forcing?

What to do?

« Better understand the system and its forcings.

* Explore the models’, and the system’s, robustness and sensitivity
— stochastic structural and statistical stability!
— linear response = response function + susceptibility function!!
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Disintegration of the measure supported by the R.A.

Another proj. of the disintegrated measure, more “friendly”
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y

@ The next slides are similar, with different noise level o
and more I.D....

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity




Disintegration of the measure supported by the R.A.

@ 1 Billion I.D., and a different color palette!
@ Intensity is a = 0.2.

@ Do you want different noise intensities?

Michael Ghil Toward a Mathematical Theory of Climate Sensitivity
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¥ ... keep today’s

climate for tomorrow?

Thought leaders
Rice, top left, spoke
of multilateralism,
while Bono, left,
demanded more
action on poverty.
Presidents Karzai
and Musharraf,
right, both face
troubles at home

Agitator Gore

¥ Feed the world today

o r compact to tackle
I climate change

and poverty

Davos, Feb. 2008, photos by TIME Magazine, 11 Feb. ‘08;

see also Hillerbrand & Ghil, Physica D, 2008, 237, 2132—-2138,
doi:10.1016/j.physd.2008.02.015 .
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BY MICHAEL GRUNWALD
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Politicians and Big Business

are pushing biofuels like

corn-based ethanol as

e alternatives to oil. All they’re
really doing is driving up

( ) o H a n d y n a Sty world food prices, helping
to destroy the Amazon

jungle, and making global

warming worse

LI

doi:10.1016/}.physd.2008.02.015 w
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