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Prelude

Symmetric “random" walk on Z generated by an ergodic
dynamical system (X , T , µ): take f : X → {1,−1} with µ(f ) = 0,
e.g. f (x) = 2χE(x)− 1 with µ(E) = µ(Ec), and set

Sn(f ) :=
n−1∑
i=0

f (T ix)
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More generally, one may consider f : X → {a,−b} (again with
µ(f ) = 0),

e.g. f (x) = 2(χE(x)− µ(E)) with a = 2(1− µ(E))
and b = 2µ(E), thus obtaining a “symmetric" walk on R.
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As before with a = 2/3 and b = 4/3
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Some mathematical problems

1. By ergodicity Sn = o(n). Actual growth? In several senses:
pointwise, in L∞, in L2. Upper and lower bounds.

2. Existence of a subsequence nj ↗∞ s.t. Snj /
√nj is

asymptotically normally distributed.

3. ....

I S. I., Dispersion of ergodic translations, Int. J. of Math. and
Matem. Sci., Vol. 2006, Art. ID 20568, 1-20.

I C. Bonanno, S. I., A renormalisation approach to irrational
rotations, Ann. Matem. Pura e Appl. 188 (2009), 247-267.

I J.-P. Conze, S. I., in progress.
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The q-adic shift transformation

X = R/Z, µ = Lebesgue, T (x) := q · x (mod 1), q integer ≥ 2,
and f (x) = 2χ[0,1/2)(x)− 1.

In this case there are exactly 2n different walks of length n and
the answers to the previous problems are:

I ‖Sn‖2 =

{ √
n , q even(

q+1
q−1

)√
n + o(n) , q odd

I Sn/‖Sn‖2 → N (0, 1) in distribution

More generally, slightly different behaviour for
f (x) = 2(χ[0,β)(x)− β) depending whether β is a q-adic rational
or not.
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... and the q-adic adding machine transformation

X = R/Z, µ = Lebesgue, T (x) := x − (1− q−k ) + q−(k+1)

whenever x ∈ [1− q−k , 1− q−(k+1)), k ≥ 0 and q integer ≥ 2.

q = 2
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Let Zq := { z =
∑∞

i=0 xiqi : xi ∈ {0, 1, . . . , q − 1}} denote the
compact group of q-adic integers

(with metric
ρ(z, z ′) = q−min{i : xi 6=x ′i }).

The map
U : Zq → Zq , U(z) = z + 1

with 1 = 1 · q0 + 0 · q1 + 0 · q2 + · · · , is minimal and has a
unique invariant prob. meas. (normalized Haar measure)

Moreover, Ψ : Zq → R/Z given by

Ψ

( ∞∑
i=0

xiqi

)
:=

∞∑
i=0

xiq−(i+1) mod 1

is measure preserving, continuous and surjective, and

T ◦Ψ(z) = Ψ ◦ U(z) , ∀z ∈ Zq



Let Zq := { z =
∑∞

i=0 xiqi : xi ∈ {0, 1, . . . , q − 1}} denote the
compact group of q-adic integers (with metric
ρ(z, z ′) = q−min{i : xi 6=x ′i }).

The map
U : Zq → Zq , U(z) = z + 1

with 1 = 1 · q0 + 0 · q1 + 0 · q2 + · · · , is minimal and has a
unique invariant prob. meas. (normalized Haar measure)

Moreover, Ψ : Zq → R/Z given by

Ψ

( ∞∑
i=0

xiqi

)
:=

∞∑
i=0

xiq−(i+1) mod 1

is measure preserving, continuous and surjective, and

T ◦Ψ(z) = Ψ ◦ U(z) , ∀z ∈ Zq



Let Zq := { z =
∑∞

i=0 xiqi : xi ∈ {0, 1, . . . , q − 1}} denote the
compact group of q-adic integers (with metric
ρ(z, z ′) = q−min{i : xi 6=x ′i }).

The map
U : Zq → Zq , U(z) = z + 1

with 1 = 1 · q0 + 0 · q1 + 0 · q2 + · · · , is minimal and has a
unique invariant prob. meas. (normalized Haar measure)

Moreover, Ψ : Zq → R/Z given by

Ψ

( ∞∑
i=0

xiqi

)
:=

∞∑
i=0

xiq−(i+1) mod 1

is measure preserving, continuous and surjective, and

T ◦Ψ(z) = Ψ ◦ U(z) , ∀z ∈ Zq



Let Zq := { z =
∑∞

i=0 xiqi : xi ∈ {0, 1, . . . , q − 1}} denote the
compact group of q-adic integers (with metric
ρ(z, z ′) = q−min{i : xi 6=x ′i }).

The map
U : Zq → Zq , U(z) = z + 1

with 1 = 1 · q0 + 0 · q1 + 0 · q2 + · · · , is minimal and has a
unique invariant prob. meas. (normalized Haar measure)

Moreover, Ψ : Zq → R/Z given by

Ψ

( ∞∑
i=0

xiqi

)
:=

∞∑
i=0

xiq−(i+1) mod 1

is measure preserving, continuous and surjective,

and

T ◦Ψ(z) = Ψ ◦ U(z) , ∀z ∈ Zq



Let Zq := { z =
∑∞

i=0 xiqi : xi ∈ {0, 1, . . . , q − 1}} denote the
compact group of q-adic integers (with metric
ρ(z, z ′) = q−min{i : xi 6=x ′i }).

The map
U : Zq → Zq , U(z) = z + 1

with 1 = 1 · q0 + 0 · q1 + 0 · q2 + · · · , is minimal and has a
unique invariant prob. meas. (normalized Haar measure)

Moreover, Ψ : Zq → R/Z given by

Ψ

( ∞∑
i=0

xiqi

)
:=

∞∑
i=0

xiq−(i+1) mod 1

is measure preserving, continuous and surjective, and

T ◦Ψ(z) = Ψ ◦ U(z) , ∀z ∈ Zq



Using this fact, one shows that T acts as a one cycle
permutation on the set

{ [
`/qk , (` + 1)/qk) , 0 ≤ ` < qk } of

q-adic intervals of length q−k ,

and d(x , T qk
(x)) < q−k for all

x ∈ [0, 1) (all points are positively recurrent).

Example: q = 2.

Setting x =
∑∞

j=0 xj2−j−1 with xj ∈ {0, 1}, we have
T (0.111 . . . ) = 0.000 . . . and for k ≥ 1

T (0. 11 . . . 1︸ ︷︷ ︸
k−1

0 xkxk+1 . . . ) = 0. 00 . . . 0︸ ︷︷ ︸
k−1

1 xkxk+1 . . .
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Hence, for any f : X → R of bounded variation V (f ) with
µ(f ) = 0 we have

‖Sqk (f )‖∞ ≤ V (f ) , ∀k ≥ 0

which is a Denjoy-Koksma-like inequality for q-adic rotations.

Note: "rational approximations" of T - whose orbits are all
periodic of period qk - are obtained by restricting U to finite
subgroups Z/qkZ of Zq or, equivalently, by using the map Tk
which coincides with T but on the interval [1− q−k , 1), where it
writes Tk (x) := x − 1 + q−k .

Given qk ≤ n < qk+1, one writes n =
∑k

i=0 ciqi with 0 ≤ ci < q,
and gets the

upper bound:

‖Sn(f )‖∞ ≤ (q − 1)V (f )(1 + logq n)
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For observables of the type f (x) := 2(χ[0,β)(x)− β) for some
β ∈ (0, 1),

there are at most 2n different walks of length n, but
the precise number depends on β. In particular the number of
walks of any length is bounded if β is a q-adic rational, i.e.
β = `/qk .

Finally, using elementary (number theoretical) methods (cf. H.
Faure, 80’s), one can prove the existence of a subsequence
nk ↗∞ for which one has the following

lower bound: ‖Snk (f )‖∞ ≥ C Nlogq(nk ) (β)

where Nc(x) is the number of pairs (q − 1, 0) or (0, q − 1)
among the first [c] terms of the q-adic expansion of x ∈ [0, 1).
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The irrational rotation of the circle

X = R/Z, µ = Lebesgue, T (x) := x + α (mod 1) with α ∈ R \Q.

Let α = [a1, a2, a3, . . . ] and pk/qk := [a1, . . . , ak ] be its k -th
(fast) convergent. We have∣∣∣∣`α− `

pk

qk

∣∣∣∣ < `

qkqk+1
<

1
qkak+1

, 1 ≤ ` ≤ qk

which yields the Denjoy-Koksma inequality (for f of bounded
variation with µ(f ) = 0):

‖Sqk (f , α)‖∞ ≤ V (f ) , ∀k ≥ 1
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For qk ≤ n < qk+1

one has the Ostrowski representation:
n =

∑k
i=0 ciqi with 0 ≤ ci ≤ ai+1 which yields the upper bound,

‖Sn(f , α)‖∞ ≤ V (f )
k+1∑
i=1

ai

Set ‖x‖ := min{|x − p| : p ∈ Z}, so that ‖rα‖ = d(x , T r x).

Definition: the type of α is the number

γ = sup{s : lim inf
r→∞

r s · ‖rα‖ = 0}

I γ ≥ 1
I {γ = 1} ⊃ {α = [a1, a2, a3, . . . ] : ai = O(1), ∀i ≥ 1}.
I If η = sup{ s :

∣∣∣α− p
q

∣∣∣ < C
qs+2 , ∀p

q} > 0 then γ = 1 + η.

Example: ai = 22i ⇒ γ = 2.
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r · ‖rα‖ vs r for α = (
√

5− 1)/2



We have the following

Theorem.

I If ai = O(1) then ‖Sn(f , α)‖∞ = O(log n).

I If α is of type γ ≥ 1 then ‖Sn(f , α)‖∞ = O
(

n1− 1
γ+ε log n

)
,

∀ε > 0.
I particular cases
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Sn vs n for α = (
√

5− 1)/2, with ai = 1, ∀i ≥ 1, and
f (x) = 2χ[0,1/2)(x)− 1

‖Sn(f , α)‖∞ = O(log n)
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Sn vs n for α = e − 2, with ai = 2l for i = 3l − 1, l ≥ 1, and
ai = 1 otherwise (f as before).

‖Sn(f , α)‖∞ = O(log2 n/ log2 log n)



Growth in L2: dispersion

For f ∈ L2(X , µ) with µ(f ) = 0 set DSn := ‖Sn(f , α)‖2
2 ≡ µ(S2

n).
Note: to get non trivial behaviour we must avoid that
f = g ◦ T − g for some g ∈ L2(X , µ).

Some basic spectral theory
I ρ(k) := µ(f · f ◦ T k ) =

∫ 1
0 e2πikλσf (dλ), where the measure

σf on (0, 1] is the spectral type of f , and

DSn =
n−1∑

k=−n+1

(n − |k |)ρ(k) =

∫ 1

0
Φn(λ)σf (dλ),

with Φn(λ) = Φn(1− λ) := sin2(n πλ)/sin2(πλ).

I 〈DSn〉 := 1
n
∑n−1

k=0 DSk satisfies (finite or infinite)

lim
n→∞

〈DSn〉 =

∫ 1

0
(2 sin2(πλ))−1σf (dλ)
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The α-rotation has eigenvalues λr = e 2πi r α with eigenvectors
er (x) = e 2πi r x ,

hence

σf (dλ) =
∑
r∈Z

|fr |2δ(λ− {rα}) dλ , fr = (f , er )

and
DSn =

∑
r∈Z

|fr |2Φn(‖rα‖)

Some consequences: for all α ∈ R \Q

I DSn → 0 along the subsequence n = qk , k →∞.

I limn→∞〈DSn〉 = ∞.
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Lower bounds for DSn

Since
4
π2 n2 ≤ Φn(x) ≤ π2

4
n2 for 0 ≤ x ≤ 1

2n

we have
DSn ≥ c1 n2

∑
‖rα‖< 1

2n

|fr |2 ≥ c2 n2 |fqkn
|2

where kn := min{ k : ‖qkα‖ < 1
2n} satisfies lim log qkn

log n = 1
γ .

Theorem. Assuming that |fr | > c r−δ for some 1
2 < δ < γ, there

exists a subsequence nj ↗∞ s.t.

DSnj ≥ C n
2

“
1− δ

γ−ε

”
j , ∀ε > 0

Note: this cannot be applied if α is of type 1 and the Fourier
coefficients fr decay as (or faster than) 1/r .
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The functions Φn(x) and 〈Φn(x)〉 are both or order n2 for
0 ≤ x < 1

2n .

But for 1
2n ≤ x ≤ 1

2 they behave differently:

〈Φn(x)〉 ≥ 1
8 π2x2
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Φn(x) and 〈Φn(x)〉 vs x for n = 10
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Lower bounds for 〈DSn〉

Now we can write

〈DSn〉 ≥ c1
∑

‖rα‖≥ 1
2n

|fr |2

‖rα‖2 ≥ c2

kn∑
i=1

a2
i q2

i−1|fqi−1 |
2

with kn ∈ {k , k + 1, k + 2} whenever qk ≤ n < qk+1.

Example: f (x) = 2(χ[0,β)(x)− β), fr = 2 sin(πrβ)
πr e−iπrβ (r 6= 0)

and

qk ≤ n < qk+1 =⇒ 〈DSn〉 ≥ C
k∑

i=1

a2
i sin2(πβqi−1)

If ai = O(1) and β = 1/2 we get a logarithmic lower bound.
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Diffusion and discrepancy via renormalization

Consider again the sequence of successive closest distances
to the initial point dk := ‖qkα‖ = (−1)k (qkα− pk ). We have

d0 = α, d1 = 1− a1α, d2 = α− a2(1− a1α), . . .

which can be associated to a family of nested arcs Jk :

J 0 J 1

J 2 J 1J 1

J 0 J 0

J 2J 2 J 2 J 3
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Some (known) facts:

I We have

dk

dk−1
= [ak+1, ak+2, . . . ], k ≥ 0 (d−1 = 1)

i.e. dk =
∏k

i=0 Gi(α), where G(x) = {1/x} is the Gauss
map, and dk−1 = ak+1dk + dk+1.

I The first return map in the interval Jk (that is [0, dk ) or
[1− dk , 1) according whether k is even or odd) is the
rotation through the angle (−1)k+1dk+1 = qk+1x − pk+1.

I Three distance theorem: the sequence {rα} with 0 ≤ r < n
partitions the circle into n intervals whose lengths are
`1 = dk , `2 = dk−1 − j dk for some k and 1 ≤ j ≤ ak+1,
and `3 = `1 + `2 (which may disappear).
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Sketch of the argument

Taking f (x) = 2χ[0,1/2)(x)− 1 we study Sn(f , α) by looking at
the values of f ({rα}) with [rα] constant.

Lemma. Setting rm := min{r ≥ 0 : [rα] = m} we have

tm := #{r ≥ 0 : [rα] = m} =

{
a1 + 1 if {rmα} < d1

a1 otherwise

The argument is different according whether a1 is even or odd.

In the first case, if tm = a1 “nothing happens".

We can then restrict to study what happens for
rmj ≤ r ≤ rmj + a1 with tmj = a1 + 1, and this can be done by
looking at the first return map on the interval J1 = [0, d1), which
is isomorphic to the rotation T̃ on X through the angle
α̃ = d2/d1 = G2(α).
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For example, if n = rmj for some j ≥ 1, then its Ostrowski
representation has the form n =

∑
i≥2 ciqi .

The relation with its
indices is as follows

n = rmj =
∑
i≥2

ciqi =⇒ mj =
∑
i≥2

cipi =⇒ j = j(n) =
∑
i≥2

ci q̃i−2

where q̃k are the denominators for α̃. Extending to all n one
gets a map

Reven : (n, α) → (j(n), α̃)

where α̃ = G2(α) and j(n) is explicitly computable so that

Sn(f , α) = Sj(n)(α̃) + uniformly bounded

In a similar (but somewhat more involved) way one constructs
Rodd corresponding to a1 odd.



For example, if n = rmj for some j ≥ 1, then its Ostrowski
representation has the form n =

∑
i≥2 ciqi . The relation with its

indices is as follows

n = rmj =
∑
i≥2

ciqi =⇒ mj =
∑
i≥2

cipi =⇒ j = j(n) =
∑
i≥2

ci q̃i−2

where q̃k are the denominators for α̃. Extending to all n one
gets a map

Reven : (n, α) → (j(n), α̃)

where α̃ = G2(α) and j(n) is explicitly computable so that

Sn(f , α) = Sj(n)(α̃) + uniformly bounded

In a similar (but somewhat more involved) way one constructs
Rodd corresponding to a1 odd.



For example, if n = rmj for some j ≥ 1, then its Ostrowski
representation has the form n =

∑
i≥2 ciqi . The relation with its

indices is as follows

n = rmj =
∑
i≥2

ciqi =⇒ mj =
∑
i≥2

cipi =⇒ j = j(n) =
∑
i≥2

ci q̃i−2

where q̃k are the denominators for α̃.

Extending to all n one
gets a map

Reven : (n, α) → (j(n), α̃)

where α̃ = G2(α) and j(n) is explicitly computable so that

Sn(f , α) = Sj(n)(α̃) + uniformly bounded

In a similar (but somewhat more involved) way one constructs
Rodd corresponding to a1 odd.



For example, if n = rmj for some j ≥ 1, then its Ostrowski
representation has the form n =

∑
i≥2 ciqi . The relation with its

indices is as follows

n = rmj =
∑
i≥2

ciqi =⇒ mj =
∑
i≥2

cipi =⇒ j = j(n) =
∑
i≥2

ci q̃i−2

where q̃k are the denominators for α̃. Extending to all n one
gets a map

Reven : (n, α) → (j(n), α̃)

where α̃ = G2(α) and j(n) is explicitly computable so that

Sn(f , α) = Sj(n)(α̃) + uniformly bounded

In a similar (but somewhat more involved) way one constructs
Rodd corresponding to a1 odd.



For example, if n = rmj for some j ≥ 1, then its Ostrowski
representation has the form n =

∑
i≥2 ciqi . The relation with its

indices is as follows

n = rmj =
∑
i≥2

ciqi =⇒ mj =
∑
i≥2

cipi =⇒ j = j(n) =
∑
i≥2

ci q̃i−2

where q̃k are the denominators for α̃. Extending to all n one
gets a map

Reven : (n, α) → (j(n), α̃)

where α̃ = G2(α) and j(n) is explicitly computable so that

Sn(f , α) = Sj(n)(α̃) + uniformly bounded

In a similar (but somewhat more involved) way one constructs
Rodd corresponding to a1 odd.



Sn(f , α), α = (7 + 2√
5−1

)−1 = [8, 1, 1, 1, . . . ]

20 40 60

1

2

3

4

5

6

q2 + q6

Sj(n)(f , α̃), α̃ = G2(α) =
√

5−1
2 = [1, 1, 1, . . . ]

1 2 3 4 5

0.5

1

1.5

2

q̃0 + q̃4



Sn(f , α), α = (7 + 2√
5−1

)−1 = [8, 1, 1, 1, . . . ]

20 40 60

1

2

3

4

5

6

q2 + q6

Sj(n)(f , α̃), α̃ = G2(α) =
√

5−1
2 = [1, 1, 1, . . . ]

1 2 3 4 5

0.5

1

1.5

2

q̃0 + q̃4



Iteration of this argument leads to estimates of the following
type:

Theorem. Let a2i+1 be even ∀i ≥ 0 and r =
∑N

i=2 ciqi then

1
2

N
2 −1∑
i=0

a2i+1 ≤ max
0≤n≤r

Sn(f , α) ≤ N
2

+
1
2

N
2 −1∑
i=0

a2i+1

Note: The diffusion does not depend on the partial quotients a2i
(which can modifiy only the number of fluctuations).

For odd partial quotients in odd positions things change
significantly. For example one finds

lim sup
r→∞

max0≤n≤r Sn(f ,
√

5−1
2 )

log r
≤ 1

6 log
(√

5+1
2

)
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Discrepancy

Let

D∗
n(α) := sup

β∈(0,1)

∣∣∣∣∣1n
n−1∑
r=0

χ[0,β)({kα})− β

∣∣∣∣∣
Uniform distribution (mod 1) ⇐⇒ D∗

n(α) = o(1)

Theorem. Let α have unbounded partial quotients and denote
νeven and νodd the limits

ν∗ := lim inf
k→∞

∑k
i=1

∗
ai∑k

i=1 ai

then
1
4

max{νeven, νodd} ≤ lim sup
n→∞

n D∗
n(α)∑N

i=1 ai
≤ 1

4

where n =
∑N

i=0 ciqi .
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