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More generally, one may consider f : X — {a, —b} (again with

pu(f) = 0), e.9. f(x) = 2(xe(x) — u(E)) with a = 2(1 — p(E))
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More generally, one may consider f : X — {a, —b} (again with

pu(f) = 0), e.9. f(x) = 2(xe(x) — u(E)) with a = 2(1 — p(E))
and b = 2u(E), thus obtaining a “symmetric" walk on R.
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1. By ergodicity S, = o(n). Actual growth? In several senses:
pointwise, in L., in L,. Upper and lower bounds.

2. Existence of a subsequence n; oo s.t. Sy /\/nj is
asymptotically normally distributed.

» S. |., Dispersion of ergodic translations, Int. J. of Math. and
Matem. Sci., Vol. 2006, Art. ID 20568, 1-20.

» C. Bonanno, S. I., A renormalisation approach to irrational
rotations, Ann. Matem. Pura e Appl. 188 (2009), 247-267.

» J.-P. Conze, S. |, in progress.
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The g-adic shift transformation

X =R/Z, un = Lebesgue, T(x) := q- x(mod 1), q integer > 2,
and f(x) = 2x(o,1/2)(x) — 1.

In this case there are exactly 2" different walks of length n and
the answers to the previous problems are:
vn, qeven
> ||Shll2 = { (%) JA+o(n), godd
» Sn/l|Shll2 — N(0, 1) in distribution

More generally, slightly different behaviour for
f(x) = 2(x0,8)(x) — B) depending whether 3 is a g-adic rational
or not.
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... and the g-adic adding machine transformation

X =R/Z, i = Lebesgue, T(x) :=x — (1 — g ) + g~ k+1)
whenever x € [1 — g%, 1 — g~(k*1), k > 0 and g integer > 2.



. and the g-adic adding machine transformation

X =R/Z, i = Lebesgue, T(x) :=x — (1 — g ) + g~ k+1)
whenever x € [1 — g%, 1 — g~(k*1), k > 0 and g integer > 2.
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Let Zg :={z =Yy xq : x; € {0,1,...,g— 1}} denote the
compact group of g-adic integers (with metric
p(Z, Z/) —q min{i:x,-;éxi’})_

The map
U:Zg—7Zq , UZz)=z+1

with1=1-g°+0-9'+0-¢?+---, is minimal and has a
unique invariant prob. meas. (normalized Haar measure)

Moreover, V : Zq — R/Z given by
v (Z x,-q’) =Y " xig~ (" mod 1
i=0 i=0
is measure preserving, continuous and surjective, and

ToV(z)=VolU(z) , VzelZqg
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Hence, for any f : X — R of bounded variation V(f) with
w(f) = 0 we have

1Sgx(Dlloc < V() , Vk=0

which is a Denjoy-Koksma-like inequality for g-adic rotations.

Note: "rational approximations" of T - whose orbits are all
periodic of period g* - are obtained by restricting U to finite
subgroups Z/q*Z of Z4 or, equivalently, by using the map Tj
which coincides with T but on the interval [1 — g~%, 1), where it
writes Ty(x) := x — 14+ g~ X,

Given g¥ < n < gk, one writes n = 3" ¢iq' with 0 < ¢; < g,
and gets the

upper bound:

1Sn(Nllee < (g = 1)V(F)(1 +logg )
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For observables of the type f(x) := 2(x(o,5)(x) — 3) for some
B € (0,1), there are at most 2n different walks of length n, but
the precise number depends on j. In particular the number of
walks of any length is bounded if 5 is a g-adic rational, i.e.

B=1t/q".

Finally, using elementary (number theoretical) methods (cf. H.
Faure, 80’s), one can prove the existence of a subsequence
nx /oo for which one has the following

lower bound: || Sp, (f)|loc > CNk,gq(,,k) )]

where N¢(x) is the number of pairs (g —1,0) or (0,9 — 1)
among the first [c] terms of the g-adic expansion of x € [0,1).
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Let o = [ay, a0, a3,...] and pc/qx = [a1, ..., ak] be its k-th
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which yields the Denjoy-Koksma inequality (for f of bounded
variation with p(f) = 0):
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For gk < n < g1 one has the Ostrowski representation:
n= YK, cigi with 0 < ¢; < a1 which yields the upper bound,

k+1
1S(f. )l < V(D a
i=1
Set ||x|| := min{|x — p| : p € Z}, so that ||ra| = d(x, T x).

Definition: the type of « is the number

v =sup{s : lim inf ré - ||ra|l = 0}

> v > 1
» {y=1}D>{a=]ar,a,as,...] : a=0(1), Vi>1}.
» Ifn=sup{s: ‘a—g‘<qsﬁ2,v§}>0then~y:1+n.

Example: @ =22 = v = 2.
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We have the following
Theorem.
» If a; = O(1) then ||Sy(f, @)|lcc = O(log n).
» If ais of type v > 1 then ||Sy(f, ) |lcc = O (n“# log n),
Ve > 0.
» particular cases



Snpvs nfora = (v/5—1)/2, with a; =1, Vi > 1, and
f(x) = 2x10,1/2)(x) — 1

1Sn(f, @)|c = O(log n)



Shpvsnfora=e—-2,withg;=2/fori=3/-1,/>1,and
a; = 1 otherwise (f as before).

1Sn(f, @) ||oc = O(log® n/ log® log n)



Growth in L,: dispersion



Growth in L,: dispersion

For f € Lp(X, u) with p(f) = 0 set



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).
Note:



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).
Note: to get non trivial behaviour we must avoid that
f=goT—gforsome g e Ly(X,p).



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).
Note: to get non trivial behaviour we must avoid that
f=goT—gforsome g e Ly(X,p).

Some basic spectral theory



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).
Note: to get non trivial behaviour we must avoid that
f=goT—gforsome g e Ly(X,p).

Some basic spectral theory

> p(k) == u(f-fo TK) = [ €2™kA/(d)), where the measure
oron (0, 1] is the spectral type of f, and



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).
Note: to get non trivial behaviour we must avoid that
f=goT—gforsome g e Ly(X,p).

Some basic spectral theory
> p(k) == u(f-fo TK) = [ €2™kA/(d)), where the measure
oron (0, 1] is the spectral type of f, and

n—1

1
DS, = S (n— Ikp(k) = /0 n(N)r(dN),

k=—n+1



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).
Note: to get non trivial behaviour we must avoid that
f=goT—gforsome g e Ly(X,p).

Some basic spectral theory
> p(k) == u(f-fo TK) = [ €2™kA/(d)), where the measure
oron (0, 1] is the spectral type of f, and

n—1

1
DS, = S (n— Ikp(k) = /0 n(N)r(dN),

k=—n+1
with ®,(A) = &p(1 — ) := sin®(n7A)/sin?(7 ).



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).
Note: to get non trivial behaviour we must avoid that
f=goT—gforsome g e Ly(X,p).

Some basic spectral theory
> p(k) == u(f-fo TK) = [ €2™kA/(d)), where the measure
oron (0, 1] is the spectral type of f, and

n—1

1
DS, = S (n— Ikp(k) = /0 n(N)r(dN),

k=—n+1
with ®,(A) = &p(1 — ) := sin®(n7A)/sin?(7 ).

> (DSp) := 15"~} DSy satisfies (finite or infinite)

n



Growth in L,: dispersion

For f € Lo(X, u) with u(f) = 0 set DSy, := ||Sp(f, a)||5 = u(S3).
Note: to get non trivial behaviour we must avoid that
f=goT—gforsome g e Ly(X,p).

Some basic spectral theory
> p(k) == u(f-fo TK) = [ €2™kA/(d)), where the measure
oron (0, 1] is the spectral type of f, and

n—1

1
DS, = S (n— Ikp(k) = /0 n(N)r(dN),

k=—n+1
with ®,(A) = &p(1 — ) := sin®(n7A)/sin?(7 ).

> (DSp) := 15"~} DSy satisfies (finite or infinite)

n

1
lim (DS)) = / (2sin?(7A)) " or(dN)
0

n—oo
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er(x) = e2™'"X, hence

ol(dX) =) IFPS(A = {ra})dX , f=(f,e)
rez

and

DSn = [fr*®n(|ral)

rez

Some consequences: foralla € R\ Q

» DS, — 0 along the subsequence n = g, k — .

> liMp_oe(DSy) = oc.
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Lower bounds for DS,

Since )
4 2 T 2 1
—n" <o < — for 0<x< —
72 n(X) = 7 =7 = 2n
we have
DS,>cim? Y |f2>cnf|fy |?
Iradi< 5
where ky := min{ k : ||gkal| < 2} satisfies lim 2% = 1,

Theorem. Assuming that |f,| > cr~° for some } < § < v, there
exists a subsequence n; " oo s.t.

ps, > ¢l s
nj il ] Pl

Note: this cannot be applied if « is of type 1 and the Fourier
coefficients f, decay as (or faster than) 1/r.
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The functions ®,(x) and (®,(x)) are both or order n? for
0 < x < g~ But for 5~ < x < } they behave differently:
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®,(x) and (Pp(x)) vs x for n =10
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Lower bounds for (DS,,)

Now we can write

rall>g;

with k, € {k,k + 1,k + 2} whenever qx < n < Qx.1.

Example: £(x) = 2(xo,5)(x) — B), fr = 25%0) g=inrb (r £ 0)
and

k
Gk <N < Qo1 = (DSn) > C>_ & sin*(wBg;—1)
P

If a; = O(1) and 5 = 1/2 we get a logarithmic lower bound.
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Diffusion and discrepancy via renormalization

Consider again the sequence of successive closest distances
to the initial point dx := ||qke|| = (—1)*(gke — px). We have
d():Oé, d1:1—a104, d2:a—a2(1—a1a),...

which can be associated to a family of nested arcs Jx:

Jo ‘ Jo ‘ Jo Ji

JZ Jz J2 J3
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Some (known) facts:

» We have

a
dik = k41, Bk42,---], k=0 (d-1=1)
1

i.e. dk = ¥, G'(a), where G(x) = {1/x} is the Gauss
map, and dx_1 = ak1dk + dk+1-

» The first return map in the interval Ji (that is [0, dk) or
[1 — dk, 1) according whether k is even or odd) is the
rotation through the angle (—1) 1 dk. 1 = Gk 1X — Prss-

» Three distance theorem: the sequence {ra} with0 <r <n
partitions the circle into n intervals whose lengths are
0y =dk, lo = dk_1 — jdx forsome kand 1 <j < a1,
and /3 = ¢4 + {o (which may disappear).
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Sketch of the argument

Taking f(x) = 2x(0,1/2)(x) — 1 we study Sy(f, «) by looking at
the values of f({ra}) with [ra] constant.

Lemma. Setting ry := min{r > 0 : [ra] = m} we have

ai+1 if {rma} < o
a; otherwise

l‘m:z#{rEO:[ra]:m}:{

The argument is different according whether ay is even or odd.
In the first case, if t, = a; “nothing happens".

We can then restrict to study what happens for

m; < 1 < Im + a; with tm, = a; + 1, and this can be done by
looking at the first return map on the interval J; = [0, dy), which
is isomorphic to the rotation T on X through the angle
d=dr/dy = G?(a).
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For example, if n = ry, for some j > 1, then its Ostrowski
representation has the form n = Z,ZQ ¢iqi- The relation with its
indices is as follows

N=rm=>Y CG=>m=)Y cp=j=j(n=>Y cfz
i>2 i>2 i>2

where gy are the denominators for &. Extending to all n one
gets a map
Reven : (N, ) — (j(n), &)

where & = G?(«a) and ji(n) is explicitly computable so that
Sn(f, @) = Sjny(&) + uniformly bounded

In a similar (but somewhat more involved) way one constructs
Roda corresponding to a; odd.
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Sn(f,a), a=(7+2=)"=[8,1,1,1,...]

20 40 60 q2+QG
Sim(f,d), d=G¥a) =1 =[1,1,1,...]

N

! 2 3 4 5Qo + Q4
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lteration of this argument leads to estimates of the following
type:
Theorem. Let ayj, 1 beevenVi>0and r = Zﬁz c;q; then

-1 -1
1 N

— a1 < max Sp(f,a) < — + = aoj
2 § 2i4+1 > 0<n<r n( ; )_ 2 2 s 2i+1

Note: The diffusion does not depend on the partial quotients a;
(which can modifiy only the number of fluctuations).

For odd partial quotients in odd positions things change
significantly. For example one finds

r—o0 log r " 6log <\/§2+1)
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Discrepancy
Let

Dh(a) = sup ZX[o,m {ka}) -

B€(0,1)

Uniform distribution (mod 1) <= Dj,(«) = o(1)

Theorem. Let oo have unbounded partial quotients and denote
Veven @Nd 1044 the limits

Uy 1= I|m|nf Z’ 1 a
k=oo YK 4 g
then ] Di(a) 1
nD¥(«
— ven <li n < -
2 MaXx{ Veven, Yodd } |mj‘,oLip Z V4 )

where n ="V ciq:.



