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Here is an heuristic “derivation” of the heat equation:

Imagine that the heat (temperature) u is a fluid, then it

must satisfy
atu == le]

where j is the current.
Now assume (Fourier Law, 1822) 7 = kVu, then

Oyu = div(kVu)

Does this makes any sense?



Not really: Statistical Mechanics states that heat is the

average local Kinetic energy per particle in a body.

Thus, to obtain a rigorous (classical) derivation of the heat
equation one should write the equations of motion for the N
particles of a body, solve them and show that (in some
precise technical sense) the local energy density satisfies the

heat equation,

with N ~ 10%* |



In the following | will limit the discussion to the a classical

microscopic description.

That is, the starting point (at least ideally) are the Newton

equations.

First rigorous attempt: Rieder, Lebowitz, and Lieb (1967)

studied harmonic crystals
Found anomalous conductivity in d < 3 (No Fourier Law!).

Absurd? Maybe not ( ).



Not much progress till now but much related work:
Hydrodynamics limits (Varadhan, ....)

Relation between Non-equilibrium Statistical Mechanics and
Dynamical Systems (Sinai, Ruelle, Gallavotti, ..... )

Kinetic limit and Boltzmann equation (Lanford, .....)

Enormous amount of numerical simulations
(Fermi—Pasta—-Ulam, .....)



A lot of interest lately
Dynamical Systems point of view: Eckmann—Young (2004)

Kinetic Limit point of view: Spohn et al. (2006),
Bricmont—Kupiainen (2007), ...

Sistem driven by stochastic heath baths:
Eckmann—Pillet—Rey-Bellet (1999), ...

Systems with small random noise: Olla et al. (2005), ...



| have a Dynamical System point of view and | am
interested in the role played by nonlinearities and instability.

My goal Is to understand a very simple situation:
an insulator made of almost non interacting particles

To simplify further the problem | am willing to consider a
situation in which there exists an intermediate time scale

between the microscopic and the macroscopic one.



The structure of the models

Consider a Hamiltonian H (g, p) with compact energy levels
with good statistical properties and a Lattice or Graph (say
7%, for simplicity). At each site of the lattice we have a
particle with coordinates (g;, p;). For each A C Z% consider
the system

H\(2,p) = ZH(%?@') + € Z V{4, q;)

ieA i—j|=1



Related to the heuristic work of Gilbert and Gaspard

Obstacles gray, particles black.
What would we like to do?



We are interested in the evolution of ¢;(t) = ip?(t).
The goal is to perform an hydrodynamics limit:
let A; ;= {i €7 : |i] < L}; consider, for each v € C*,
Lngp ®2L2 Z®ZL2 )0r-1;().
1€Ap, 1eA L
We want to prove that, almost surely,
lim — Z@z (L)1, ):/ u(x,t)p(x)
L—>oo ichs Rd

where
Oyu = div(kVu)
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Very hard: the motion determined by
i€ i—j|=1

Is hyperbolic if the energy of the particles is large with
respect to £ but if a particle is slow, then
are possible.

..... elliptic islands
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So, let us introduce an intermediate time scale via

weak coupling.

d .
aﬁ%(t) =c)i=¢ Z VV(pi + p;)

i—j]=1

Consider the energies {e;(¢*t)}. The hope is to prove that
they converge in law to random variables &;(t). In other

words, for each smooth function ¢

lim E(p(e)) = E(e(E)).

e—0

But, if so, how would £ look like?
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Heuristically we expect a mesoscopic equation where the

(q,p) degrees of freedom have been averaged out, namely:

dE; = Z (&, E;)dt + Z v(&iy E5)dBy; jy

i—j]=1 i—j[=1

where the By; 3 = —By; ;3 are independent Brownian
motions and 3 ¢ : e 72 ?&) are invariant measures.

Note that, since it must be £ > 0, necessarily
v(0,z) = v(x,0) = 0.

We have then a degenerate diffusion.
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The above equation is similar to the Ginzburg-Landau type
equation for which Varadhan has already proved the

hydrodynamics limit.

Unfortunately, Varadhan approach does not apply directly to

the degenerate situation at hand.

Thus:
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Work in collaboration with Stefano Olla
Consider A C Z% and the Hamiltonian

H2 —Z—pZ+ZU ¢)+ e Z Vg — q5),

1EA €A |z ]| 1

where U(0) = U’(0) = 0 and c¢Id < U"(x) < C'Id and the
same for V.
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In addition, consider a random force preserving single sites
kinetic energies (i.e. independent diffusions on the spheres

p? = cost). We define the diffusion by the generator
d
soy Y,
€N rh
where X, ,p7 = 0 (e.8. Xiwp := DinOp, ), — PisnOp, . )-
The full generator is thus given by

L.y :={H Y +0°S
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Theorem 1 (Olla, L.) The limiting process &; is well
defined and satisfies the mesoscopic differential stochastic

equation
d€; = Y o(&.E)dt+ Y ov(E, E)dBig
i—k|=1 i—k|=1
where

0(En E0) = Coed DN, — 0, (e H 590128, )

and ~v*(a,b) = abG(ab) for some positive symmetric smooth
function G.
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Work in progress with Dmitry Dolgopyat

Let M be the a manifold of negative curvature and T'M its
cotangent bundle. Then, for A C Z¢, consider the
Hamiltonian on T'M

HY ::Z%pf—FE > Vigng),

i€ A i—j|=1
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Theoremg.i, amen2 (Dolgopyat, L.) The limiting process
E; 1s well defined and satisfies the mesoscopic differential
stochastic equation

d€i = Y (&, &)dt+ Y (&, E)dBpin
ji—k|=1 ji—k|=1

where

1 d+1, -
O‘(giv gk‘) — 5(8& - 8513)72(5%'7 gk) + T(gz L gk 1)72(5% gk‘)
and v%(a,b) = abG(\/a,V/'b) for some pOSItlve symmetric
ven Ex T B are

invariant. Moreover, zero energy is unreacheable.

smooth function GG. The measures | |
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I be the state space of the single site system.

Q) = 17" x RZ" the state space of the full system (body)
(x;(n), E;(n)) € Q be the state at time n € N.

The x; evolve independently from the E;, while

Ei(n+1) = [1 - emo(a(n))| Ei(n) + o Y 7(¢(n)) Evrz(n)

|z|=1
e 1 > m, >0, energy Is positive

1 o .
* o Z\z|:1 T, = T, total energy is conserved.
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If > .c74 £i(0) < 0o, we can renormalize the variables so
that » .4 F;(0) =1 then > . 4 E;j(n) =1 for all n € N.

IDEA:
Think of the E;(n) as the probability of having an imaginary

particle at site 7 at time n. Then the particle performs a

random walk in random environment
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Energy

RWRE

all energy at 0

start walk at 0

heat equation in averaged HL

annealed CLT

a.s. heat equation in HL

quenched CLT

Random: z;(n) independent (or weakly coupled) Markov
chains [Dolgopyat-Keller-L. (2007)]

Deterministic: z;(n+ 1) = Tux;, T : [ — [ piecewise

expanding (chaotic) maps [Dolgopyat-L. (2008)]

22




Quenched CLT

The map £ : [7" — 7" (F(0)), == T'(x;), i € 7%, has a

unique natural invariant measure °.

Theorem 3 (Dolgopyat-L.) There exists g > 0: for all
e < gg, d € N* and for ¢ almost all {x;(0)};cz4,

(a) +Xn —v Pyas,;

(b) XJ\\’/_N”N = N (0,X%?) under Py.
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