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Here is an heuristic “derivation” of the heat equation:

Imagine that the heat (temperature) u is a fluid, then it

must satisfy

∂tu = divj

where j is the current.

Now assume (Fourier Law, 1822) j = k∇u, then

∂tu = div(k∇u)

Does this makes any sense?
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Not really: Statistical Mechanics states that heat is the

average local Kinetic energy per particle in a body.

Thus, to obtain a rigorous (classical) derivation of the heat

equation one should write the equations of motion for the N

particles of a body, solve them and show that (in some

precise technical sense) the local energy density satisfies the

heat equation,

with N ∼ 1024 !
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In the following I will limit the discussion to the a classical

microscopic description.

That is, the starting point (at least ideally) are the Newton

equations.

First rigorous attempt: Rieder, Lebowitz, and Lieb (1967)

studied harmonic crystals

Found anomalous conductivity in d < 3 (No Fourier Law!).

Absurd? Maybe not (carbon nanotubes).
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Not much progress till now but much related work:

Hydrodynamics limits (Varadhan, ....)

Relation between Non-equilibrium Statistical Mechanics and

Dynamical Systems (Sinai, Ruelle, Gallavotti, .....)

Kinetic limit and Boltzmann equation (Lanford, .....)

Enormous amount of numerical simulations

(Fermi–Pasta–Ulam, .....)
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A lot of interest lately

Dynamical Systems point of view: Eckmann–Young (2004)

Kinetic Limit point of view: Spohn et al. (2006),

Bricmont–Kupiainen (2007), ...

Sistem driven by stochastic heath baths:

Eckmann–Pillet–Rey-Bellet (1999), ...

Systems with small random noise: Olla et al. (2005), ...
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I have a Dynamical System point of view and I am

interested in the role played by nonlinearities and instability.

My goal is to understand a very simple situation:

an insulator made of almost non interacting particles

To simplify further the problem I am willing to consider a

situation in which there exists an intermediate time scale

between the microscopic and the macroscopic one.
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The structure of the models

Consider a Hamiltonian H(q, p) with compact energy levels

with good statistical properties and a Lattice or Graph (say

Z
d, for simplicity). At each site of the lattice we have a

particle with coordinates (qi, pi). For each Λ ⊂ Z
d consider

the system

Hε
Λ(q̄, p̄) =

∑
i∈Λ

H(qi, pi) + ε
∑
|i−j|=1

V (qi, qj)
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A motivating example.

Related to the heuristic work of Gilbert and Gaspard

1

Obstacles gray, particles black.

What would we like to do?
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We are interested in the evolution of ei(t) = 1
2
p2
i (t).

The goal is to perform an hydrodynamics limit:

let ΛL := {i ∈ Zd : |i| ≤ L}; consider, for each ϕ ∈ C∞,

1

Ld

∑
i∈ΛL

ϕ(L−1i)ei(L
2t) =

1

Ld

∑
i∈ΛL

ei(L
2t)δL−1i(ϕ).

We want to prove that, almost surely,

lim
L→∞

1

Ld

∑
i∈ΛL

ei(L
2t)δL−1i(ϕ) =

∫
Rd

u(x, t)ϕ(x)

where

∂tu = div(k∇u)
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Very hard: the motion determined by

Hε
Λ(q̄, p̄) =

∑
i∈Λ

H(qi, pi) + ε
∑
|i−j|=1

V (qi, qj)

is hyperbolic if the energy of the particles is large with

respect to ε but if a particle is slow, then ..... elliptic islands

are possible.
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So, let us introduce an intermediate time scale via

weak coupling.

d

dt
ei(t) = εji = ε

∑
|i−j|=1

∇V (pi + pj)

Consider the energies {ei(ε−2t)}. The hope is to prove that

they converge in law to random variables Ei(t). In other

words, for each smooth function ϕ

lim
ε→0

E(ϕ(e)) = E(ϕ(E)).

But, if so, how would E look like?
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Heuristically we expect a mesoscopic equation where the

(q, p) degrees of freedom have been averaged out, namely:

dEi =
∑
|i−j|=1

α(Ei, Ej)dt+
∑
|i−j|=1

γ(Ei, Ej)dB{i,j}

where the B{i,j} = −B{j,i} are independent Brownian

motions and ∃ φ : e−β
P

i φ(Ei) are invariant measures.

Note that, since it must be E ≥ 0, necessarily

γ(0, x) = γ(x, 0) = 0.

We have then a degenerate diffusion.
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The above equation is similar to the Ginzburg-Landau type

equation for which Varadhan has already proved the

hydrodynamics limit.

Unfortunately, Varadhan approach does not apply directly to

the degenerate situation at hand.

Thus: even if one establishes the mesoscopic
equation a lot of work remains to be done.
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Concrete example
Work in collaboration with Stefano Olla

Consider Λ ⊂ Z
d and the Hamiltonian

HΛ
ε :=

∑
i∈Λ

1

2
p2
i +

∑
i∈Λ

U(qi) + ε
∑
|i−j|=1

V (qi − qj),

where U(0) = U ′(0) = 0 and c Id ≤ U ′′(x) ≤ C Id and the

same for V .
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In addition, consider a random force preserving single sites

kinetic energies (i.e. independent diffusions on the spheres

p2
i = cost). We define the diffusion by the generator

S =
∑
i∈Λ

d∑
r,h

X2
i;r,h

where Xi;r,hp
2
i = 0 (e.g. Xi;r,h := pi,r∂pi,h

− pi,h∂pi,r
).

The full generator is thus given by

Lε,Λ := {HΛ
ε , ·}+ σ2S
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Theorem 1 (Olla, L.) The limiting process Ei is well

defined and satisfies the mesoscopic differential stochastic

equation

dEi =
∑
|i−k|=1

α(Ei, Ek)dt+
∑
|i−k|=1

σγ(Ei, Ek)dB{i,k}

where

α(Ei, Ek) = Cσe
1
2

P
j φ(Ej)(∂Ei − ∂Ek)

(
e−

1
2

P
j φ(Ej)γ2(Ei, Ek)

)
.

and γ2(a, b) = abG(ab) for some positive symmetric smooth

function G.
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Another example
Work in progress with Dmitry Dolgopyat

Let M be the a manifold of negative curvature and TM its

cotangent bundle. Then, for Λ ⊂ Z
d, consider the

Hamiltonian on TM

HΛ
ε :=

∑
i∈Λ

1

2
p2
i + ε

∑
|i−j|=1

V (qi, qj),
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Theorem(well, almost)2 (Dolgopyat, L.) The limiting process

Ei is well defined and satisfies the mesoscopic differential

stochastic equation

dEi =
∑
|i−k|=1

α(Ei, Ek)dt+
∑
|i−k|=1

γ(Ei, Ek)dB{i,k}

where

α(Ei, Ek) =
1

2
(∂Ei − ∂Ek)γ2(Ei, Ek) +

d+ 1

4
(E−1
i − E−1

k )γ2(Ei, Ek).

and γ2(a, b) = abG(
√
a,
√
b) for some positive symmetric

smooth function G. The measures
∏

x∈Λ E
d−2
2

x e−βEx are

invariant. Moreover, zero energy is unreacheable.

19



Attempts to awoid weak coupling
I be the state space of the single site system.

Ω = IZ
d × RZd

+ the state space of the full system (body)

(xi(n), Ei(n)) ∈ Ω be the state at time n ∈ N.

The xi evolve independently from the Ei, while

Ei(n+ 1) = [1− επ0(x(n))]Ei(n) +
ε

2d

∑
|z|=1

πz(x(n))Ei+z(n)

• 1 ≥ πz ≥ 0, energy is positive

• 1
2d

∑
|z|=1 πz = π0, total energy is conserved.
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If
∑

i∈Zd Ei(0) <∞, we can renormalize the variables so

that
∑

i∈Zd Ei(0) = 1 then
∑

i∈Zd Ei(n) = 1 for all n ∈ N.

IDEA:

Think of the Ei(n) as the probability of having an imaginary

particle at site i at time n. Then the particle performs a

random walk in random environment
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Fact Energy RWRE

Ei(0) = δi,0 all energy at 0 start walk at 0

E(ELx(L
2)) ∼ Ze−σx

2
heat equation in averaged HL annealed CLT

ELx(L
2) ∼ Ze−σx

2
P-a.s. a.s. heat equation in HL quenched CLT

Random: xi(n) independent (or weakly coupled) Markov

chains [Dolgopyat-Keller-L. (2007)] true in all dimensions

Deterministic: xi(n+ 1) = Txi, T : I → I piecewise

expanding (chaotic) maps [Dolgopyat-L. (2008)] true in all

dimensions
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Quenched CLT
The map F : IZ

d → IZ
d
, (F (θ))i := T (xi), i ∈ Zd, has a

unique natural invariant measure µe.

Theorem 3 (Dolgopyat-L.) There exists ε0 > 0: for all

ε < ε0, d ∈ N∗ and for µe almost all {xi(0)}i∈Zd ,

(a) 1
N
XN → v Pθ a.s.;

(b) XN−vN√
N
⇒ N (0,Σ2) under Pθ.
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