
Attractors in billiards with
dominated splitting

We prove that trajectories in a huge class of “bil-
liards´´ with angle of reflection different than angle of
incidence have

dominated splitting: tangent bundle splits into two
invariant directions, the contractive behavior on one
of them dominates the other one by a uniform factor.

The three types of attractors predicted in the paper
by Pujals and Sambarino (Annals of Math., 2009) ap-
pear in the dynamics of these billiards
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Billiards: math. models for physical phenomena
where hard balls move in a container with elastic col-
lisions on its walls and/or with each other.

A point particle moves on Riem. manifold with
boundaries. They determine dynamical props.

May vary from completely regular (integrable) to
fully chaotic. Examples: dispersing billiard tables due
to Ya. Sinai (model of hard balls studied by L. Boltz-
mann and the Lorentz gas).

In contrast, billiards in polygonal tables are not hy-
perbolic, but generically ergodic.
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The dynamics of classical billiards are prototypes of
conservative dynamics: the Liouville measure is pre-
served: they are not useful to model rich phenomena
that could hold in regimes far from the equilibrium.

Non-elastic billiards:
The particle moves along straight lines inside the

billiard table; it hits one of the walls with angle η with
respect to the normal, it is reflected with angle φ.

If φ = λη (with λ ≤ 1): the ball is “kicked” by the
wall giving a new impulse in the direction of the nor-
mal and thereby increasing its kinetic energy (pinball
billiards)
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Consider the diffeomorphism f : M → M′ ⊂ M,
where M is a riemannian manifold. An f -invariant
set Λ is said to have dominated splitting if we can de-
compose its tangent bundle in two invariant continu-
ous subbundles TΛM = E ⊕ F, such that:

‖D f n
|E(x)‖ ‖D f −n

|F( f n(x))‖ ≤ Can, for all x ∈ Λ, n ≥ 0.

with C > 0 and 0 < a < 1; a is called a constant of
domination. It is assumed that neither of the subbun-
dles is trivial (otherwise, the other one has a uniform
hyperbolic behavior).

Any hyperbolic splitting is a dominated one.
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Meaning of the above definition: it says that, for
n large, the “greatest expansion” of D f n on E is less
than the “greatest contraction” of D f n on F, and by a
factor that becomes exponentially small with n.

In other words, every direction not belonging to E
must converge exponentially fast under iteration of
D f to the direction F.
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Limit set: L( f ) =
⋃

x∈M (ω(x)∪ α(x)) x ∈ M is nonwandering
with respect to f if for any open set containing x there is a N > 0
such that f N(U)∩U 6= ∅. Set of all nonwandering points of f is
denoted by Ω( f ). B ⊂ M is called transitive if there exists a point
x ∈ B such that its orbit { f nx}n∈ZZ is dense in B

Compact invariant submanifold V is normally hyperbolic if the
tangent space to the ambient space can decompose in three in-
variant continuous subbundles TV M = Es ⊕ TV ⊕ Eu, such that:

inf
x∈V

m(Dx f|Eu(x)) > sup
x∈V

‖Dx f|TV(x)‖,

sup
x∈V

‖Dx f|Es(x)‖ < inf
x∈V

m(Dx f|TV(x))

where the minimum norm m(A) of a linear transformation A is

defined by m(A) = inf{‖Au‖ : ||u|| = 1}.
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Consequences of dominated splitting

One of the main goals in dynamics is to understand
how the dynamics of the tangent map D f controls or
determines the underlying dynamics of f .

Smale: if limit set L( f ) splits into invariant subbun-
dles, TL( f )M = Es ⊕ Eu and vectors in Es are con-
tracted by positive iteration by D f (Eu, by negative
iteration) L( f ) can be decomposed into disjoint union of
finitely compact maximal invariant and transitive sets; pe-
riodic points are dense in L( f ); asymptotic behavior of any
trajectory is represented by an orbit in L( f ).
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A natural question arises: is it possible to describe
the dynamics of a system having dominated splitting?

Moreover, since in dimension larger than two ex-
amples of open sets of non-hyperbolic diffeomorphisms
that have a dominated splitting exist, it is natural to
ask: under the assumption of dominated splitting,
is it possible to conclude hyperbolicity in dimension
two?

In fact, a similar spectral decomposition theorem
as the one stated for hyperbolic dynamics holds for
smooth surface diffeomorphisms exhibiting a domi-
nated splitting.
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Theorem (PS09) Let f ∈ Diff2(M2) and assume that
L( f ) has a dominated splitting. Then L( f ) can be decom-
posed into L( f ) = I ∪ L̃( f ) ∪R such that

1. I , set of periodic points with bounded periods con-
tained in a disjoint union of finitely many normally
hyperbolic periodic arcs or simple closed curves.

2. R, finite union of normally hyperbolic periodic simple
closed curves supporting an irrational rotation.

3. L̃( f ) can be decomposed into a disjoint union of finitely
many compact invariant and transitive sets (called ba-
sic sets). Furthermore f|L̃( f ) is expansive.

0-9



1 Billiards

Let B be an open bounded and connected subset of
the plane whose boundary consists of a finite number
of closed Ck-curves Γi, i = 1, · · · , m.

The billiard map is a Ck−1 diffeormorphism.

We assume that B is simple connected.
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Non-elastic Billiards

φi: angle from the reflected vector to the inward
normal n(qi) .

The N-E billiard map is P(r0, φ0) = (r1, φ1) where r1

is obtained as in the usual billiard (moving along the
direction determined by φ0 beginning at the bound-
ary point determined by r0) and

−π/2 ≤ φ1 = −η1 + f (r1, η1) ≤ π/2

where η1 is the angle from the incidence vector at q1

to the outward normal −n(q1) and
f : [0, |Γ|] × [−π/2, π/2] → R is a C2 function.
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A1. We assume that the perturbation depends only
on the angle of incidence: f = f (r, η) = f (η)
for −π/2 ≤ η ≤ π/2, with η × f (η) ≥ 0.
Let us call λ(η) = 1 − f ′(η); λi = 1 − f ′(ηi).

In different works we have added some additional
global conditions.

The following one is the main one for the numerical
results (Arroyo, Markarian, Sanders):
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A1b. We also assume that f (0) = 0 and that for a
fixed constant λ < 1, 0 ≤ λ(η) < λ.

A typical model for this case is λ(η) = λ < 1: there
is uniform contraction, f (η) = (1−λ)η and the angle
of reflection is φ = −λη for −π/2 ≤ η ≤ π/2.

The trajectory moves approaching to the normal
line in the reflection point: the absolute value of the
angle (with the normal line) of reflection is smaller
than or equal to the angle of incidence.
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−π/2              0                  π/2
(a)

−π/2                0                  π/2
(b)

Figure 1: Graphics of φ = −η + f (η) for assumptions A1a and A1b.
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The derivative Dx0
T of the N-E billiard map satis-

fying Condition A1 at x0 = (r0, φ0) is given by

−
(

A B
(K1A + K0)λ1 (K1B + 1) λ1

)

(1)

A =
t0K0 + cos φ0

cos η1
; B =

t0

cos η1

This formula includes the angle of reflection and
the angle η of incidence in the perturbed billiard.

If f (r, η) ≡ 0, then φ = −η and we have a elastic
billiard map
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If fη = f ′ = 1 =⇒ λ = 0, then the reflecting an-
gle is constant, φ0. The resulting one dimensional dy-
namical system has derivative

t0K0 + cos φ0

− cos η1

(its dynamical behavior depends on the curvature K
and the distance between bouncing points) and is de-
fined on the union of a finite number of arcs of finite
length.

Extreme case: the particle reflects at the boundary
along the normal line. We call it, slap billiard map.
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Theorem 1. The pinball billiard map associated to a bil-
liard table satisfying Assumption A1b with non negative
curvature (semidispersing walls) has a dominated split-
ting.

This result includes billiards with cusps and polyg-
onal billiards.
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We have proved [MPS] results on pinball-billiards
with focusing components of the boundary, curvature
bounded away from zero (−K > c > 0), satisfying
Assumptions A1b, or other technical conditions on
the function f

Theorem 2. Consider the pinball billiard map associated
to a billiard table bounded by C3 curves that are C2 close
to circle. If it satisfies Assumption A1b it has dominated
splitting.
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(a) (b)

Figure 2: Single trajectories, λ = 0.99 in (a) circular table, (b) ellip-
tical table with a = 1.5. Colours indicate the number of bounces,
with lighter colours corresponding to later times, asymptotic
convergence to period-2 orbits. Initial condition in (a) is a ran-
dom one; in (b) was taken close to the unstable period-2 orbit
along the major axis, from which it rapidly diverges.

0-19



Theorem 3. The pinball billiard map associated to a bil-
liard table with focusing components satisfying Wojtkowski
conditions for a elastic billiard map being hyperbolic (non-
vanishing Lyapunov exponents) has dominated splitting.

Wojtkowski’s condition t0 > d0 + d1 where

di = − cos φi/Ki, i = 0, 11. It is equivalent to d2R
dr2 < 0,

where R(r) is the curvature of the curve.

1Note that di is the length of the subsegment of q0q1 contained
in the disk D(qi) tangent to Γ at qi with radius Ri/2 = −1/(2Ki)
( disks of semi-curvature)
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Additional conditions on the other components of
the boundary are:
- dispersing comps. not adjacent to focusing comps. must be
outside the disks of semi-curvature of all focusing components;

- disks of semi-curv. of diff. foc. comps.: disjoint;

- angle of intersection of smooth pieces of the boundary must be

greater than π if both are focusing; not less than π if one is focus-

ing, other dispersing; and bigger than π/2 if one is dispersing,

other flat.

Cardioid satisfies curvature’s condition at all its points

and d2R
dr2 < c < 0. Then the cardioid admits C4 pertur-

bations, maintaining the hyperbolicity.
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Figure 3: Cardioid ρ(θ) = 1 + cos(θ). Chaotic attractor, for (a)
λ = 0.3 and (b) λ = 0.8. The inset of (a) shows the attractor in
configuration space. Coordinates: arc length s and sin(φ), where
φ is the exit angle at each collision. The cusp of the cardioid is at
s = ±4.
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(a) λ = 0.02 (b) λ = 0.072 (c) λ = 0.2

Figure 4: Cuspless cardioid: Numerically-observed attractors in
configuration space, with increasing λ. For λ < λ∗ ≃ 0.0712:
just a period-2 attractor. This periodic attractor coexists with a
chaotic attractor for λ ∈ [λ∗, λc], where λc ≃ 0.093. Period-2 at-
tractor then becomes unstable, leaving just the chaotic attractor,
which expands for increasing λ.
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Figure 5: Cuspless cardioid: chaotic attractor; different colours
(red, blue and cyan) indicate increasing order of λ. Vertical lines
mark the centre of the vertical section and the two curvature dis-
continuities at s = ±

√
3/4.
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Now we recall a general method for establishing
hyperbolic properties of dynamical systems [?, ?].

Let M be a compact Riemannian manifold (perhaps,
with boundary and corners) of dimension d, M′ ⊂ M
an open and dense subset and F : M′ → M a Cr (with
r ≥ 1) diffeomorphism of M′ onto F(M′). M′ is the
union of a finite number of open connected sets M+

i .
Note that all the iterations of F are defined on the set

M̃ = ∩∞

n=−∞Fn(M′).

Let m be the Lebesgue measure on M. We will assume
that M̃ has full measure: m(M) = m(M̃).
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We recall that a quadratic form Q in R
d is a function

Q : R
d → R such that Q(u) = Q2(u, u), where Q2 is a

bilinear symmetric function on R
d × R

d.

Equivalently, Q : R
d → R is a quadratic form if

there is a symmetric matrix A such that Q(u) = uT Au
for u ∈ IRd (here uT means transposition of a column-
vector u).

A quadratic form Q on M is a function Q : T M → R

such that its restriction Qx to TxM at m-almost every
point x ∈ M is a quadratic form in the usual sense.
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We say that a quadratic form Q is nondegenerate at x
if for every nonzero vector u ∈ Tx M, there exists a v ∈
TxM such that Q2(v, u) 6= 0 (equivalently, det A 6= 0
for the corresponding symmetric matrix A).

We say that Q is positive (nonnegative) if at every
point x the form Qx is positive definite (positive semidef-
inite); i.e. Qx(u) > 0 (respectively, Qx(u) ≥ 0) for all
0 6= u ∈ TxM.
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Let be Q a nondegenerate quadratic form defined
on T M with positive index of inertia equal to p and
negative index of inertia equal to q, p + q = d, p ≥
1, q ≥ 1, for every x ∈ M.

We assume that Q is continuous on each M+
i and

denote by

C±(x) = {v ∈ Tx M : ±Qx(v) > 0} ∪ {0}
the open cones of, respectively, positive and negative
vectors (with the zero vector included), and by C0(x)
their common bound., C0(x) = {v ∈ TxM : Qx(v) =
0}.
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DxT : Tx M → TTx M is
1. Q-separated if DxTC+(x) ⊂ C+(Tx),

2. strictly Q-separated if DxT(C+(x)∪C0(x)) ⊂ C+(Tx),

3. Q-monotone if QTx(DxTu) ≥ Qx(u) every u ∈
TxM,
4. strictly Q-monotone if QTx(DxTu) > Qx(u) for

every u ∈ Tx M, u 6= 0.

3. =⇒ 1. 4 =⇒ 2.
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In Wojtkowski: Monotonicity, J -algebra of Potapov
and Lyapunov exponents, Proceed. of Symposia in
Pure Maths., 69, AMS (2001), following some remark-
able works by V. P. Potapov, it is proved that
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1. If DT is Q-separated then the set of positive num-
bers r such that 1

r DT is Q-monotone is a closed
interval possibly degenerating to a point.
r ∈ [r−, r+], r− > 0, with

r2
−(x) = sup

u∈C−(x)

QTx(DxTu)

Qxu
, (2)

r2
+(x) = inf

u∈C+(x)

QTx(DxTu)

Qxu
. (3)

2. If DT is strictly Q-separated then the set of posi-
tive numbers r such that 1

r DT is strictly Q-monotone
is an open interval: (r−, r+), r− > 0.
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Definition 1. DT : TM → TM is eventually uni-
formly strictly Q-separated (euss) at x if it is Q-separated
in every point Ti(x), i ∈ ZZ of the orbit of x, and there ex-
ist constants m ≥ 1 and 0 < d < 1 (not depending on x
and n) such that for each n ≥ 0

#{i : DFn+ixFC+(Tn+ix) is not strictly contained in

C+(Fn+i+1x)} ≤ m and

#

{

j : 0 ≤ j ≤ m,
r−(Tn+jx)

r+(Tn+jx)
≤ d

}

> 0 . (4)

Definition 2. The diffeomorphism F is euss in an invari-
ant set N if DF is euss at each point x ∈ N.
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Proposition 4. If the diffeomorphism F is euss in an in-
variant set N then N has a dominated splitting.

Proof. Is similar to the proof of Proposition 4.1 in [?]
(see also Proof of Theorem 1 in [?]).
Conditions for F being euss are automatically satis-
fied in the original proof because it is assumed that F
acts on a compact manifold. . If F preserves
a probability measure, the exponential contraction of
the diameter of the manifold of (positive) linear sub-
spaces contained in C+ is obtained by standard meth-
ods (using the Birkhoff Ergodic Theorem).

But we are not using invariant measures. Then ...
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Convex billiards

If B is strictly convex, sufficiently smooth boundary
with curvature K (0 < a < K < b), the phase space is
compact.

There exists positive measure set N in the billiard
phase space M that is foliated by invariant curves.
The set N accumulates on the horizontal boundary
of M. (Lazutkin)

All trajectories starting in the set N have caustics,
which are convex curves lying inside B.
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Figure 6: Three-pointed egg, ρ(θ) = 1 + α cos(3θ), Hamiltonian case λ = 1,
Different colours indicate trajectories from different initial conditions. For
α > 1/10, table becomes non-convex
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Figure 7: Change in position of one of the attracting period-3 orbits as λ is var-
ied; shape parameter α = 0.08. For λ = 1 (thick black line) the orbit is elliptic;
for λ < 1 it is attracting. The values of λ shown are, in an anti-clockwise di-
rection, λ = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.45, 0.41, 0.40. The latter value is close to
the numerically-determined limit of existence of the period-3 orbits, which is
λ ≃ 0.39.
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(a) λ = 0.1 (b) λ = 0.39 (c) λ = 0.43 (d) λ = 0.45

Figure 8: Three-pointed egg: Attractors in configuration space,
α = 0.08: (a) period-4 orbit which persists from the stable
period-4 orbit of the slap map (λ = 0); (b) period-8, after un-
dergoing a single period-doubling bifurcation; (c): localized
chaotic attractor, after the accumulation of period doublings;
(d):trajectories tend to remain for a long time in each part of the
attractor previously localised, before jumping to a different part,
as shown by the colours in the figure. In each of (c) and (d),
coexisting period-3 orbit is shown in black.
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Figure 9: Attractors in phase space for the three-pointed egg with α = 0.08
and λ = 0.43 (red), λ = 0.45 (green). The coexisting period-3 attractors are
also shown (black ×).
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Figure 10: Three-pointed egg: basins of attraction, α = 0.08. (a) chaotic at-
tractor (blue points), its basin of attraction (green); period-3 attracting orbits
(black), their basins of attraction in white, are shown. (b) chaotic attractor
has disappeared In red dots and blank, basins of each of period-3 orbits. The
region that in (a) was occupied by the basin of the chaotic attractor is now a
region where the basins of the two periodic orbits intermingle.
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Lazutkin: In small neighbourhood of the stationary
curves of billiard map T: a family of invariant closed
curves. T is topologically equivalent to rotation (each
invariant curve having its own small angle).

Rotation numbers can not be well approximated by
rational numbers.

Family of caustics is not continuous: may not ap-
pear around some rational rotation numbers.

KAM theorem is the main instrument in its proof:
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Let f be a volume preserving diff of class Cr, r ≥ 4
of a surface M. x non degenerate elliptic fixed point,
then given ǫ > 0 ∃ arbitrary small neighborhood U
of x and U0 ⊂ U:
a) U0 is a union of f-invariant simple closed curves of
class Cr−1 containing x in their interior;
b) the restriction of f to each of these curves is topo-
logically equivalent to an irrational rotation;
c) µ(U \ U0) ≤ ǫµ(U).

r = 4, Rûsmann (1970).
r = 3, Herman, Asterisque 103-104 (1983) and 144

(1986), with the loss of c)
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There can be other invariant curves.

φ angle of the trajectory vector with the oriented
tangent to the curve with radius of curvature R

x(φ) =
∫ φ

0
R(β) cos βdβ, y(φ) =

∫ φ

0
R(β) sin βdβ.

If R(φ) = a + b cos nφ, the billiard map has an
invariant curve with irrational rotation on the line of
constant angle α such that

n tan α = tan nα for n ≥ 4, a > b.

If n = 4, α ≈ 66o.
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Non elastic billiard maps: composition of a clas-
sical billiard followed by a change at the reflection
angle. Let γ be a C2 rotational invariant curve of T,
given α = g(ϕ). The non elastic billiard map P is

P(ϕ0, α0) = (ϕ1, α1 − h(ϕ1 − g(α1))

where (ϕ1, α1) = T(ϕ0, α0) and h : I 7→ R is a C2

function, 0 ∈ I, closed interval.
Compact strip: A compact subset of [0, 2π) × (0, π)

with non-empty interior and whose boundaries are
two distinct rotational curves (not necessarily invari-
ant nor graphs).
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Since M is compact, it is much more simple to prove
the existence of dominated splitting.

Let u, v : M 7→ T M be two vector fields such that
for each x ∈ M, u(x) = ux and v(x) = vx are two lin-
early independent vectors in the tangent space TxM.
Continuous vector fields ⇒ continuous cone field.

[D fx]U is the matrix representation of the deriva-
tive at x, with the choice of {ux, vx} and {u f x, v f x} as
bases of TxM and T f x M respectively.

Lemma 5. Let Λ be a compact f -invariant subset of M. If
the entries of [D fx]U are strictly positive for every x ∈ Λ

then Λ has a dominated splitting.
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A (non homotopic to a point) continuous closed
curve γ on the cylinder [0, 2π) × (0, π) is called a ro-
tational curve.

As T preserves area, two distinct invariant rota-
tional curves do not intersect. This, together with the
reversibility of T and the compactness of γ, imply that
either g(ϕ) ≡ π

2 or there exist constants b and B such
that

0 < b ≤ g(ϕ) ≤ B <
π

2
or

π

2
< B ≤ g(ϕ) ≤ b < π.
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Proposition 6. Given a classical billiard map T on an
oval, with a C2 invariant rotational curve γ = {(ϕ, g(ϕ))},
there exist a closed interval I, containing 0 in its interior,
a C2-function

h : I 7→ R, h(0) = 0, 0 < µ ≤ h′(t) ≤ λ < 1

and a compact strip S such that the non elastic billiard P
defined by T, g and h is a C2-diffeomorphism from S onto
P(S) and L(P) ∩ S contains γ and has a dominated split-
ting. Moreover, the non elastic dynamics on γ is deter-
mined by its rotation number with respect to T.
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(a) Attractor γ0 (b) Basin of attraction

Figure 11: Ellipse, eccentricity e = 0.35. Contraction µ = 0.5. The simulation
indicates that γ0 is the unique attractor .
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(a) Attractors: γ0 and period-2 orbit (b) Basin of attraction

Figure 12: Ellipse, eccentricity e = 0.35. Contraction µ = 0.2. The simulation
indicates that there is a period-2 attractor; γ0 is not the unique attractor .

0-48



(a) Attractors: γ0 and periodic orbits; (b) Basin of attraction

Figure 13: Nonintegrable billiard; n = 6. Contraction µ = 0.1. The simulation

indicates that there are periodic attractors; γ0 (α = arctan
√

7 + 4
√

21/3 ≃
0.41π) is not the unique attractor .
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