Attractors in billiards with
dominated splitting

We prove that trajectories in a huge class of “bil-
liards”” with angle of reflection different than angle of
incidence have

dominated splitting: tangent bundle splits into two
invariant directions, the contractive behavior on one
of them dominates the other one by a uniform factor.

The three types of attractors predicted in the paper
by Pujals and Sambarino (Annals of Math., 2009) ap-
pear in the dynamics of these billiards
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Billiards: math. models for physical phenomena
where hard balls move in a container with elastic col-
lisions on its walls and /or with each other.

A point particle moves on Riem. manifold with
boundaries. They determine dynamical props.

May vary from completely regular (integrable) to
fully chaotic. Examples: dispersing billiard tables due

to Ya. Sinai (model of hard balls studied by L. Boltz-
mann and the Lorentz gas).

In contrast, billiards in polygonal tables are not hy-
perbolic, but generically ergodic.

0-2



The dynamics of classical billiards are prototypes of
conservative dynamics: the Liouville measure is pre-
served: they are not useful to model rich phenomena
that could hold in regimes far from the equilibrium.

Non-elastic billiards:

The particle moves along straight lines inside the

billiard table; it hits one of the walls with ang]
respect to the normal, it is reflected with ang]

e n with
e ¢.

If ¢ = Ay (with A < 1): the ball is “kickec
wall giving a new impulse in the direction of

" by the
the nor-

mal and thereby increasing its kinetic energy (pinball

billiards)
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Consider the diffeomorphism f : M — M’ C M,
where M is a riemannian manifold. An f-invariant
set A is said to have dominated splitting if we can de-

compose its tangent bundle in two invariant continu-
ous subbundles TAM = E & F, such that:

IDfEol ||Df‘ Flf (x ||<Ca forallx € A,n > 0.

with C > 0and 0 < a < 1; a is called a constant of
domination. It is assumed that neither of the subbun-
dles is trivial (otherwise, the other one has a uniform
hyperbolic behavior).

Any hyperbolic splitting is a dominated one.
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Meaning of the above definition: it says that, for
n large, the “greatest expansion” of Df" on E is less
than the “greatest contraction” of Df" on F, and by a
factor that becomes exponentially small with n.

In other words, every direction not belonging to E
must converge exponentially fast under iteration of
Df to the direction F.



Limit set: L(f) = Uyem (w(x) Ua(x)) x € M is nonwandering
with respect to f if for any open set containing x thereisa N > 0
such that fN(U) N U # @. Set of all nonwandering points of f is
denoted by Q)(f). B C M is called transitive if there exists a point
x € B such that its orbit { f"x}, 7 is densein B

Compact invariant submanifold V' is normally hyperbolic if the
tangent space to the ambient space can decompose in three in-
variant continuous subbundles TyM = E°* ® TV ¢ E*, such that:

inf m(Dxf]E”(x)) > sup HDxf|TV(x)||’

xeV xcV
Dy fi e inf m(D
itell‘;ll ofjs (| < 10 m(Dafiry(x))

where the minimum norm m(A) of a linear transformation A is
defined by m(A) = inf{||Au|| : ||u|| = 1}.
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Consequences of dominated splitting

One of the main goals in dynamics is to understand
how the dynamics of the tangent map D f controls or
determines the underlying dynamics of f.

Smale: if limit set L( f) splits into invariant subbun-
dles, Ty ;)M = E° ©® E" and vectors in E° are con-
tracted by positive iteration by Df (E¥, by negative
iteration) L(f) can be decomposed into disjoint union of
finitely compact maximal invariant and transitive sets; pe-
riodic points are dense in L( f); asymptotic behavior of any
trajectory is represented by an orbit in L(f).
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A natural question arises: is it possible to describe
the dynamics of a system having dominated splitting?

Moreover, since in dimension larger than two ex-
amples of open sets of non-hyperbolic diffeomorphisms
that have a dominated splitting exist, it is natural to
ask: under the assumption of dominated splitting,
is it possible to conclude hyperbolicity in dimension
two?

In fact, a similar spectral decomposition theorem
as the one stated for hyperbolic dynamics holds for
smooth surface diffeomorphisms exhibiting a domi-
nated splitting.
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Theorem (PS09) Let f € Diff*(M?) and assume that
L(f) has a dominated splitting. Then L(f) can be decom-
posed into L(f) = T U L(f) U R such that

1. Z, set of periodic points with bounded periods con-
tained in a disjoint union of finitely many normally
hyperbolic periodic arcs or simple closed curves.

2. 'R, finite union of normally hyperbolic periodic simple
closed curves supporting an irrational rotation.

3. L(f) can be decomposed into a disjoint union of finitely
many compact invariant and transitive sets (called ba-
sic sets). Furthermore fz ¢y is expansive.

0-9



1 Billiards

Let B be an open bounded and connected subset of
the plane whose boundary consists of a finite number
of closed Cr-curves T';, i=1,--- ,m.

The billiard map is a C*~! diffeormorphism.

We assume that B is simple connected.
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Non-elastic Billiards

¢;: angle from the reflected vector to the inward
normal n(q;) .

The N-E billiard map is P(ro, o) = (r1, 1) where r;
is obtained as in the usual billiard (moving along the
direction determined by ¢y beginning at the bound-
ary point determined by r() and

—t/2< 1 =—m+ f(ri,m) < /2

where 771 is the angle from the incidence vector at g,

to the outward normal —n(g;) and
f:10,|T|] x [-mt/2,t/2] — Ris a C? function.
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Al. We assume that the perturbation depends only
on the angle of incidence: f = f(r,1) = f(n)
for —t/2 <n < m/2,withy x f(n) > 0.
Letuscall A(y) =1— f'(n); \i=1— f'(n;).

In different works we have added some additional
global conditions.

The following one is the main one for the numerical
results (Arroyo, Markarian, Sanders):

0-12



Alb. We also assume that f(0) = 0 and that for a
fixed constant A < 1,0 < A(n) < A.

A typical model for this caseis A(y7) = A < 1: there
is uniform contraction, f(#) = (1 — A)y and the angle
of reflectionis ¢ = —Any for —t/2 <n < 7w /2.

The trajectory moves approaching to the normal
line in the reflection point: the absolute value of the
angle (with the normal line) of reflection is smaller
than or equal to the angle of incidence.
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—T1/2 0 TU/2 —T1/2 0 TU/2
(a) (b)

Figure 1: Graphics of ¢ = —y + f(#) for assumptions Ala and Alb.
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The derivative D,,T of the N-E billiard map satis-
fying Condition A1l at xg = (70, ¢o) is given by

B A b (1)
(K1A + Ko)A (K1B+1) Aq
A — toKO -+ COS gbo ; B — to
COS 111 COS 171

This formula includes the angle of reflection and
the angle 77 of incidence in the perturbed billiard.

If f(r,n) = 0, then ¢ = —» and we have a elastic
billiard map
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It f, = f' =1 = A = 0, then the reflecting an-
gle is constant, ¢y. The resulting one dimensional dy-
namical system has derivative

toKo -+ COS gb()
— COS 11

(its dynamical behavior depends on the curvature K
and the distance between bouncing points) and is de-
fined on the union of a finite number of arcs of finite
length.

Extreme case: the particle reflects at the boundary
along the normal line. We call it, slap billiard map.
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Theorem 1. The pinball billiard map associated to a bil-
liard table satisfying Assumption Alb with non negative

curvature (semidispersing walls) has a dominated split-
ting.

This result includes billiards with cusps and polyg-
onal billiards.
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We have proved [MPS] results on pinball-billiards
with focusing components of the boundary, curvature
bounded away from zero (—K > ¢ > 0), satistying
Assumptions Alb, or other technical conditions on
the function f

Theorem 2. Consider the pinball billiard map associated
to a billiard table bounded by C> curves that are C* close

to circle. If it satisfies Assumption Alb it has dominated
splitting.
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Theorem 3. The pinball billiard map associated to a bil-
liard table with focusing components satisfying Wojtkowski
conditions for a elastic billiard map being hyperbolic (non-
vanishing Lyapunov exponents) has dominated splitting.

Wojtkowski’s condition ty > dy + d; where
d; = —cos i/K;, i = 0,1. It is equivalent to 2% < 0,
where R(r) is the curvature of the curve.

'Note that d; is the length of the subsegment of gp4; contained
in the disk D(g;) tangent to I at g; with radius R;/2 = —1/(2K;)
( disks of semi-curvature)
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Additional conditions on the other components of

the boundary are:
- dispersing comps. not adjacent to focusing comps. must be
outside the disks of semi-curvature of all focusing components;

- disks of semi-curv. of diff. foc. comps.: disjoint;

- angle of intersection of smooth pieces of the boundary must be
greater than 77 if both are focusing; not less than 7t if one is focus-
ing, other dispersing; and bigger than 71/2 if one is dispersing,
other flat.

Cardioid satisfies curvature’s condition at all its points

and ‘;271; < ¢ < 0. Then the cardioid admits C* pertur-

bations, maintaining the hyperbolicity.
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sin(g)

() (b)

Figure 3: Cardioid p(6) = 1+ cos(#). Chaotic attractor, for (a)
A = 0.3 and (b) A = 0.8. The inset of (a) shows the attractor in
configuration space. Coordinates: arc length s and sin(¢), where

¢ is the exit angle at each collision. The cusp of the cardioid is at
s = x4.
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@) A = 0.02 (b) A = 0.072 (©) A =02

Figure 4: Cuspless cardioid: Numerically-observed attractors in
configuration space, with increasing A. For A < A, ~ 0.0712:
just a period-2 attractor. This periodic attractor coexists with a
chaotic attractor for A € [A,, A:], where A, ~ 0.093. Period-2 at-
tractor then becomes unstable, leaving just the chaotic attractor,
which expands for increasing A.
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Figure 5: Cuspless cardioid: chaotic attractor; different colours
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mark the centre of the vertical section and the two curvature dis-
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Now we recall a general method for establishing
hyperbolic properties of dynamical systems [?, ?].

Let M be a compact Riemannian manifold (perhaps,
with boundary and corners) of dimension d, M" C M
an open and dense subset and F: M’ — M a C" (with
r > 1) diffeomorphism of M’ onto F(M'). M’ is the
union of a finite number of open connected sets M.
Note that all the iterations of F are defined on the set

M=n_ F'(M).

n=—00

Let m be the Lebesgue measure on M. We will assume
that M has full measure: m(M) = m(M).
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We recall that a quadratic form Q in IR? is a function
Q: R? — R such that Q(u) = Q»(u, u), where Q, is a
bilinear symmetric function on R¥ x IR“.

Equivalently, Q: R? — R is a quadratic form if
there is a symmetric matrix A such that Q(u) = u! Au
for u € R? (here u” means transposition of a column-
vector u).

A quadratic form Qon Misa function Q: 7M — R
such that its restriction Q, to 7, M at m-almost every
point x € M is a quadratic form in the usual sense.
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We say that a quadratic form Q is nondegenerate at x
if for every nonzero vector u € 7, M, there existsa v €
7T, M such that Q»(v,u) # 0 (equivalently, det A # 0
for the corresponding symmetric matrix A).

We say that Q is positive (nonnegative) if at every
point x the form Q, is positive definite (positive semidef-
inite); i.e. Qy(u) > 0 (respectively, Q,(u) > 0) for all
0#£ue .M.
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Let be Q a nondegenerate quadratic form defined

on 7 M with positive index

of inertia equal to p and

negative index of inertia equalto g, p +q = d,p >

1,9 > 1, for every x € M.

We assume that Q is continuous on each M;" and

denote by

Ci(X) :{UGI];MI:

-Qy(v) > 0} U{0}

the open cones of, respectively, positive and negative
vectors (with the zero vector included), and by Cy(x)

their common bound., Cy(x) = {v € T,M : Q.(v) =

0}.
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D, T :TM — 11 M is
1. Q-separated if D, TC,(x) C C,(Tx),

2. strictly Q-separated if D, T(C (x)UCy(x)) C C4(Tx),

3. Q-monotone if Qry(D,Tu) > Qy(u) every u €

1. M,
4. strictly Q-monotone if Qry(DyxTu) > Qy(u) for

every u € T,M,u # 0.
3. —= 1. 4 — 2.
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In Wojtkowski: Monotonicity, J -algebra of Potapov
and Lyapunov exponents, Proceed. of Symposia in

Pure Maths., 69, AMS (2001), following some remark-
able works by V. P. Potapoy, it is proved that
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1. It DT is Q-separated then the set of positive num-
bers r such that %DT is O-monotone is a closed
interval possibly degenerating to a point.
relr_,ro], r— >0, with

QTx(DxTM)

? (x) = , 2
r_(x) uesél_l:zx) qu ( )
r2(x) = inf Qry(DxTu) . (3)

ueCy (x) qu

2. It DT is strictly Q-separated then the set of posi-
tive numbers r such that 1 DT is strictly Q-monotone
is an open interval: (v_,r,),r— > 0.
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Definition 1. DT : TM — TM is eventually uni-
formly strictly Q-separated (euss) at x if it is Q-separated
in every point T'(x), i € ZZ of the orbit of x, and there ex-
ist constants m > 1 and 0 < d < 1 (not depending on x
and n) such that for eachn > 0

#{i: Dpari FC(T""'x) is not strictly contained in

C.(F""*1x)} <m and

r_(T"x)
T

Definition 2. The diffeomorphism F is euss in an invari-
ant set N if DF 1s euss at each point x € N.

#{j:Ogjgm,
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Proposition 4. If the diffeomorphism F is euss in an in-
variant set N then N has a dominated splitting.

Proof. Is similar to the proof of Proposition 4.1 in [?]
(see also Proof of Theorem 1 in [?]).

Conditions for F being euss are automatically satis-
fied in the original proof because it is assumed that F
acts on a compact manifold. . If F preserves
a probability measure, the exponential contraction of
the diameter of the manifold of (positive) linear sub-
spaces contained in C is obtained by standard meth-
ods (using the Birkhoff Ergodic Theorem).

But we are not using invariant measures. Then ...
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Convex billiards

If B is strictly convex, sufficiently smooth boundary
with curvature K (0 < a < K < D), the phase space is
compact.

There exists positive measure set N in the billiard
phase space M that is foliated by invariant curves.

The set N accumulates on the horizontal boundary
of M. (Lazutkin)

All trajectories starting in the set N have caustics,
which are convex curves lying inside B.
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(@) & = 0.02 (b) a = 0.08

Figure 6: Three-pointed egg, p(0) = 1 4+ a cos(30), Hamiltonian case A = 1,
Different colours indicate trajectories from different initial conditions. For
x > 1/10, table becomes non-convex
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Figure 7: Change in position of one of the attracting period-3 orbits as A is var-
ied; shape parameter « = 0.08. For A = 1 (thick black line) the orbit is elliptic;
for A < 1itis attracting. The values of A shown are, in an anti-clockwise di-
rection, A = 1.0,0.9,0.8,0.7,0.6,0.5,0.45,0.41, 0.40. The latter value is close to
the numerically-determined limit of existence of the period-3 orbits, which is
A =~ 0.39.
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@) A =0.1 (b) A = 0.39 () A = 0.43 (d) A = 045

Figure 8: Three-pointed egg: Attractors in configuration space,
« = 0.08: (a) period-4 orbit which persists from the stable
period-4 orbit of the slap map (A = 0); (b) period-8, after un-
dergoing a single period-doubling bifurcation; (c): localized
chaotic attractor, after the accumulation of period doublings;
(d):trajectories tend to remain for a long time in each part of the
attractor previously localised, before jumping to a different part,
as shown by the colours in the figure. In each of (c) and (d),
coexisting period-3 orbit is shown in black.
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Figure 9: Attractors in phase space for the three-pointed egg with & = 0.08
and A = 0.43 (red), A = 0.45 (green). The coexisting period-3 attractors are
also shown (black x).
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@) A = 0.66 (b) A = 0.7

Figure 10: Three-pointed egg: basins of attraction, « = 0.08. (a) chaotic at-
tractor (blue points), its basin of attraction (green); period-3 attracting orbits
(black), their basins of attraction in white, are shown. (b) chaotic attractor
has disappeared In red dots and blank, basins of each of period-3 orbits. The
region that in (a) was occupied by the basin of the chaotic attractor is now a
region where the basins of the two periodic orbits intermingle.
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Lazutkin: In small neighbourhood of the stationary
curves of billiard map T: a family of invariant closed
curves. T is topologically equivalent to rotation (each
invariant curve having its own small angle).

Rotation numbers can not be well approximated by
rational numbers.

Family of caustics is not continuous: may not ap-
pear around some rational rotation numbers.

KAM theorem is the main instrument in its proof:
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Let f be a volume preserving diff of class C",r > 4
of a surface M. x non degenerate elliptic fixed point,
then given € > 0 o arbitrary small neighborhood U
of xand Uy C U:

a) Up is a union of f-invariant simple closed curves of
class C'~! containing x in their interior;

b) the restriction of f to each of these curves is topo-
logically equivalent to an irrational rotation;

) (U \ Up) < epu(U).
r =4, Rismann (1970).
r = 3, Herman, Asterisque 103-104 (1983) and 144
(1986), with the loss of ¢)
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There can be other invariant curves.

¢ angle of the trajectory vector with the oriented
tangent to the curve with radius of curvature R

w(9) = [ R(B)cospdp, y(g) = [ R(B)sinpdp.

0

If R(¢p) = a+ bcosng, the billiard map has an
invariant curve with irrational rotation on the line of
constant angle a such that

ntana = tanna for n >4, a > b.

Itn=4, a~ 66°.
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Non elastic billiard maps: composition of a clas-
sical billiard followed by a change at the reflection
angle. Let oy be a C? rotational invariant curve of T,
given & = g(¢). The non elastic billiard map P is

P(¢po, a0) = (1,00 — h(p1 — g(a1))

where (¢1,41) = T(¢@o,a9) and h : T — R is a C?
function, 0 € I, closed interval.

Compact strip: A compact subset of |0,27r) x (0, 77)
with non-empty interior and whose boundaries are
two distinct rotational curves (not necessarily invari-
ant nor graphs).
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Since M is compact, it is much more simple to prove
the existence of dominated splitting.

Letu,v: M — T M be two vector fields such that
foreach x € M, u(x) = u, and v(x) = v, are two lin-
early independent vectors in the tangent space 7, M.
Continuous vector fields = continuous cone field.

Df|u is the matrix representation of the deriva-
tive at x, with the choice of {u,, v} and {uysy, Vs, } as
bases of 7,M and 7, M respectively.

Lemma 5. Let A be a compact f-invariant subset of M. If
the entries of |D fy |y are strictly positive for every x € A
then A has a dominated splitting.
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A (non homotopic to a point) continuous closed
curve 7y on the cylinder [0,27t) x (0, 7r) is called a ro-
tational curve.

As T preserves area, two distinct invariant rota-
tional curves do not intersect. This, together with the
reversibility of T and the compactness of 7y, imply that
either g(¢) = 7 or there exist constants b and B such
that

O<b§g(q))§B<g or §<B§g(q))§b<n.
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Proposition 6. Given a classical billiard map T on an
oval, with a C? invariant rotational curve v = {(¢, ¢(¢))},
there exist a closed interval I, containing 0 in its interior,
a C*~function

h:1—R, h(0)=0, 0<u<h'(t) <A<l

and a compact strip S such that the non elastic billiard P

defined by T, ¢ and h is a C*-diffeomorphism from S onto
P(S) and L(P) N S contains 7y and has a dominated split-
ting. Moreover, the non elastic dynamics on <y is deter-
mined by its rotation number with respect to T.
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(a) Attractor g (b) Basin of attraction

Figure 11: Ellipse, eccentricity e = 0.35. Contraction y = 0.5. The simulation
indicates that 7y is the unique attractor .
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a) Attractors: <o and period-2 orbit (b) Basin of attraction

Figure 12: Ellipse, eccentricity e = 0.35. Contraction y = 0.2. The simulation
indicates that there is a period-2 attractor; 7y is not the unique attractor .



(a) Attractors: <y and periodic orbits; (b) Basin of attraction

Figure 13: Nonintegrable billiard; n = 6. Contraction # = 0.1. The simulation

indicates that there are periodic attractors; g (x = arctan \/ 7 +4+21/3 ~
0.4177) is not the unique attractor .
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