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The Lorentz gas

Arch. Neerl. (1905) Hendrik Lorentz (1853-1928)
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The Boltzmann-Grad limit

• Consider the dynamics in the limit of small scatterer radius ρ

•
(
q(t), v(t)

)
= “microscopic” phase space coordinate at time t

• A dimensional argument shows that, in the limit ρ → 0, the mean free
path length (i.e., the average time between consecutive collisions) scales
like ρ−(d−1) (= 1/total scattering cross section)

• We thus re-define position and time and use the “macroscopic” coordinates(
Q(t),V (t)

)
=
(
ρd−1q(ρ−(d−1)t),v(ρ−(d−1)t)

)
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The linear Boltzmann equation

• Time evolution of initial data (Q,V ):

(Q(t),V (t)) = Φtρ(Q,V )

• Time evolution of a particle cloud with initial density f ∈ L1:

ft = Ltρ f, [Ltρf ](Q,V ) := f
(
Φ−tρ (Q,V )

)

In his 1905 paper Lorentz suggested that ft is governed, as ρ→ 0, by the linear
Boltzmann equation:

[
∂

∂t
+ V · ∇Q

]
ft(Q,V ) =

∫
Sd−1

1

[
ft(Q,V 0)− ft(Q,V )

]
σ(V 0,V )dV 0

where the collision kernel σ(V 0,V ) is the cross section of the individual scat-
terer. E.g.: σ(V 0,V ) = 1

4‖V 0−V ‖3−d for specular reflection at a hard sphere
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The linear Boltzmann equation—rigorous proofs

• Galavotti (Phys Rev 1969 & report 1972): Poisson distributed hard-sphere
scatterers

• Spohn (Comm Math Phys 1978): extension to more general random scatterer
configurations and potentials

• Boldrighini, Bunimovich and Sinai (J Stat Phys 1983): prove convergence for
almost every scatterer configuration
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The periodic Lorentz gas
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The Boltzmann-Grad limit

• Recall: We are interested in the dynamics in the limit of small scatterer radius

• (q(t),v(t)) = “microscopic” phase space coordinate at time t

• Re-define position and time and use the “macroscopic” coordinates

(Q(t),V (t)) = (ρd−1q(ρ−(d−1)t), v(ρ−(d−1)t))
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A limiting random process

A cloud of particles with initial density f(Q,V ) evolves in time t to

ft(Q,V ) = [Ltρf ](Q,V ) = f
(
Φ−tρ (Q,V )

)
.

Theorem A. For every t > 0 there exists a linear operator Lt :

L1(T1(Rd)) → L1(T1(Rd)), such that for every f ∈ L1(T1(Rd)) and
any set A ⊂ T1(Rd) with boundary of Lebesgue measure zero,

lim
ρ→0

∫
A

[Ltρf ](Q,V ) dQ dV =
∫
A

[Ltf ](Q,V ) dQ dV .

The operator Lt thus describes the macroscopic diffusion of the Lorentz gas in
the Boltzmann-Grad limit ρ→ 0.

Note: The family {Lt}t≥0 does not form a semigroup.

10



A generalization of the linear Boltzmann equation

In the case of the periodic Lorentz gas Lt does not form a semigroup, and hence
in particular the linear Boltzmann equation does not hold. This problem is re-
solved by considering extended phase space coordinates (Q,V , ξ,V +) where

(Q,V ) ∈ T1(Rd) — usual position and momentum
ξ ∈ R+ — flight time until the next scatterer
V + ∈ Sd−1

1 — velocity after the next hit

We prove the following generalization of the linear Boltzmann equation in the
extended phase space:

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ξ,V +)

=
∫

Sd−1
1

ft(Q,V 0,0,V )p0(V 0,V , ξ,V +)dV 0

with a new collision kernel p0(V 0,V , ξ,V +), given by . . .
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The collision kernel

p0(V 0,V , ξ,V +) = σ(V ,V +)Φ0
(
ξ, b(V ,V +),−s(V ,V 0)

)

• σ(V ,V +) the differential cross section
• Φ0

(
ξ, b(V ,V +),−s(V ,V 0)

)
the transition probability to exit with parame-

ter s(V ,V 0) and hit the next scatterer after time ξ with impact parameter
b(V ,V +)

12



The function Φ0

. . . yields the probability to exit a scatterer with parameter s and hit the next scat-
terer with impact parameter b after time ξ.

V 0 V

V

ρs ρ−(d−1)ξ

ρbV +
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Why “a generalization” of the linear Boltzmann equation?

[
∂

∂t
+ V · ∇Q −

∂

∂ξ

]
ft(Q,V , ξ,V +)

=
∫

Sd−1
1

ft(Q,V 0,0,V )p0(V 0,V , ξ,V +)dV 0

Substituting in the above the transition density for the random (rather than peri-
odic) scatterer configuration

p0(V 0,V , ξ,V +) = σ(V ,V +)e− vol(Bd−1
1 ) ξ

ft(Q,V , ξ,V +) = gt(Q,V )σ(V ,V +)e− vol(Bd−1
1 ) ξ

yields the classical linear Boltzmann equation for gt(Q,V ).
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The transition probability, d = 2

Φ0(ξ, w, z) =
6

π2
Υ
(

1 +
ξ−1 −max(|w|, |z|)− 1

|w + z|

)

Υ(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if 1 ≤ x,

JM & Strömbergsson (Nonlinearity 2008), cf. also Caglioti & Golse (C.R. Acad.
Sci. 2008) and Ustinov (Izv. Ran. Ser. Mat. 2009).
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The transition probability, d ≥ 3

. . . is given by the probability density that a “random d-dim euclidean lattice” has
two lattice points at given locations, one one each cap of a cylinder of length ξ
and radius 1, and no lattice point in the cylinder’s interior.

z
ξ

w
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The transition probability, d ≥ 3, ξ → 0

Φ0(ξ,w, z) = ζ(d)−1 +O(ξ)

The implied constant is independent of w, z (JM & Strömbergsson, preprint
2010).

Compare with the case of a random scatterer configuration:

Φ0(ξ,w, z) = e− vol(Bd−1
1 ) ξ
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The transition probability, d ≥ 3, ξ →∞

There exists a continuous and uniformly bounded function

F : R>0 × R>0 × R≥0 → R≥0

such that

Φ0(ξ,w, z) = ξ−2+2
dF

(
ξ

2
d(1− ‖z‖), ξ

2
d(1− ‖w‖), ξ

1
dϕ

)
+O(E),

with ϕ := ∠(w, z) ∈ [0, π2), and the error term is

E =


ξ−2 if d = 2,

ξ−2 log(2 + min(ξ, ϕ−1)) if d = 3,

min
(
ξ−2, ξ

−3+ 2
d−1ϕ

2−d+ 2
d−1

)
if d ≥ 4.

See JM & Strömbergsson (preprint 2010).
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The distribution of the free path length (ξ → 0)

free path length between consecutive collisions:

Φ0(ξ) =
1

vol(Bd−1
1 )

∫
Bd−1

1

∫
Bd−1

1

Φ0(ξ,w, z) dw dz

Φ0(ξ) =
vol(Bd−1

1 )

ζ(d)
+O(ξ)

free path length from a generic initial point:

Φ(ξ) = vol(Bd−1
1 )

∫ ∞
ξ

Φ0(η) dη

Φ(ξ) = vol(Bd−1
1 )−

vol(Bd−1
1 )2

ζ(d)
ξ +O(ξ2)

(compare with random scatterer configuration)
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The distribution of the free path length (ξ →∞)

free path length between consecutive collisions:

Φ0(ξ) =
1

vol(Bd−1
1 )

∫
Bd−1

1

∫
Bd−1

1

Φ0(ξ,w, z) dw dz

Φ0(ξ) =
22−d

d(d+ 1)ζ(d)
ξ−3 +O

(
ξ−3−2

d

) 
1 if d = 2

log ξ if d = 3

1 if d ≥ 4


free path length from a generic initial point:

Φ(ξ) = vol(Bd−1
1 )

∫ ∞
ξ

Φ0(η) dη

Φ(ξ) =
π
d−1

2

2ddΓ(d+3
2 ) ζ(d)

ξ−2 +O
(
ξ−2−2

d

)

This sharpens upper and lower bounds of Bourgain, Golse, Wennberg (CMP
1998) and Golse, Wennberg (CMP 2000).
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The key theorem:
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Joint distribution of path segments

S1

S2

S3

S4

S5
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Joint distribution for path segments

The following theorem proves the existence of a Markov process that describes
the dynamics of the Lorentz gas in the Boltzmann-Grad limit.

Theorem B. Fix an a.c. Borel probability measure Λ on T1(Rd). Then, for
each n ∈ N there exists a probability density Ψn,Λ on Rnd such that, for any
set A ⊂ Rnd with boundary of Lebesgue measure zero,

lim
ρ→0

Λ
({

(Q0,V 0) ∈ T1(Rd) : (S1, . . . ,Sn) ∈ A
})

=
∫
A

Ψn,Λ(S′1, . . . ,S
′
n) dS′1 · · · dS

′
n,

and, for n ≥ 3,

Ψn,Λ(S1, . . . ,Sn) = Ψ2,Λ(S1,S2)
n∏

j=3

Ψ(Sj−2,Sj−1,Sj),

where Ψ is a continuous probability density independent of Λ (and the lattice).

Theorem A follows from Theorem B by standard probabilistic arguments.
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First step: The distribution of free path lengths (= S1)

Previous studies:

• Polya (Arch Math Phys 1918): “Visibility in a forest” (d = 2)

• Dahlquist (Nonlinearity 1997); Boca, Cobeli, Zaharescu (CMP 2000); Cagli-
oti, Golse (CMP 2003); Boca, Gologan, Zaharescu (CMP 2003); Boca, Za-
harescu (CMP 2007): Limit distributions for the free path lengths for various
sets of initial data (d = 2)

• Dumas, Dumas, Golse (J Stat Phys 1997): Asymptotics of mean free path
lengths (d ≥ 2)

• Bourgain, Golse, Wennberg (CMP 1998); Golse, Wennberg (CMP 2000):
bounds on possible weak limits (d ≥ 2)

See also Golse’s ICM review (Madrid 2006).
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Polya’s forest
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The distribution of free path lengths (= S1)

For simplcity assume Q0 = 0 and V 0 = v random w.r.t. some a.c. prob.
measure λ on Sd−1

1 .
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ρ−(d−1)ξ

λ
({

v ∈ Sd−1
1 : ρd−1τ1 ≤ ξ

})
= . . .
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ρ−(d−1)ξ

= λ
({

v ∈ Sd−1
1 : at least one scatterer intersects ray(v, ρ−(d−1)ξ)

})
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2ρ

ρ−(d−1)ξ

≈ λ
({

v ∈ Sd−1
1 : Zd ∩ Z(v, ρ−(d−1)ξ, ρ) 6= ∅

})
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2ρ

ρ−(d−1)ξ

(
Rotate by K(v) ∈ SO(d) such that v 7→ e1

)
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2ρ

ρ−(d−1)ξ

λ
({

v ∈ Sd−1
1 : ZdK(v) ∩ Z(e1, ρ

−(d−1)ξ, ρ) 6= ∅
})
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(
Apply Dρ = diag(ρd−1, ρ−1, . . . , ρ−1) ∈ SL(d,R)

)
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2

ξ

λ
({

v ∈ Sd−1
1 : ZdK(v)Dρ ∩ Z(e1, ξ,1) 6= ∅

})
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The following Theorem shows that in the limit ρ→ 0 the lattice

ZdK(v)

(
ρd−1 0

t0 ρ−11

)
behaves like a random lattice with respect to Haar measure µ1.

Define a flow on X1 = SL(d,Z)\SL(d,R) via right translation by

Φt =

(
e−(d−1)t 0

t0 et1

)
, t = log 1/ρ.

Theorem C. Fix any M0 ∈ SL(d,R). Let λ be an a.c. Borel probability
measure on Sd−1

1 . Then, for every bounded continuous function f : X1 → R,

lim
t→∞

∫
Sd−1

1

f(M0K(v)Φt)dλ(v) =
∫
X1

f(M)dµ1(M).
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Theorem C is a direct consequence of the mixing property for the flow Φt.

The generalization of Theorem C required for the full proof of Theorem C uses
Ratner’s classification of ergodic measures invariant under a unipotent flow. We
exploit a close variant of a theorem by N. Shah (Proc. Ind. Acad. Sci. 1996) on
the uniform distribution of translates of unipotent orbits.

The central argument in the proof of Theorem B (joint distribution of path seg-
ments) follows a similar route, but is significantly more involved.
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Conclusions

• We have seen that the dynamics of the periodic Lorentz gas converges, in the
Boltzmann-Grad limit, to a random flight process that is Markov with memory
two.

• The distribution of the free path lengths has polynomial tails, in stark contrast
to the random scatterer configuration, where the distribution is exponential.

• The corresponding evolution equation is a generalized Boltzmann equation
with a collision kernel that is independent of the choice of lattice.

• The proof exploits the dynamics on the space of (affine) lattices, and the
transition probabilities of the limit process are related to natural measures on
these homogeneous spaces.
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Outlook

• Long-time dynamics of the limit process? Intermediate scaling limits?

• Other scatterer configurations: Random defects, quasicrystals, electron-phonon
interactions?

• Long-range potentials? Electro-magnetic fields?

• Quantum analogue of the generalized linear Boltzmann equation?
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The Lorentz gas in external fields

(
work in progress . . .

)
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The Lorentz gas in external fields

Rescaled Lagrangian:

Lε(q,v) = L(εq, v),

where L(q, v) is a fixed macroscopic Lagrangian, and ε > 0 a small scaling
parameter. A classical example is

L(q,v) =
1

2
‖v‖2 + A(q) · v − ϕ(q),

where (ϕ(q),A(q)) is the electro-magnetic potential.
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Example

In dimension d = 3 this leads to the evolution equation

v̇ = E(q) + v ×B(q)

with electric and magnetic field defined by

E = −∇ϕ, B = ∇×A.

A simple calculation shows that the corresponding equation for the scaled La-
gragian reads

v̇ = εE(εq) + v × εB(εq).

Hence the effective fields are weak (of order ε) and external (slowly varying on a
scale of 1/ε).
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Interesting scaling limits

• ε � ρd−1 (inverse free path length): This leads to the problem of counting
lattice points in long and thin curved strips, similar to those discussed by
Sinai, Major, Cheng-Lebowitz-Major in connection with problems in quantum
chaos. For typical fields I conjecture the classical linear Boltzmann equation
to hold (or one of its standard generalizations).
• ρ2d−1 ≪ ε ≪ ρd−1: Again we can expect the classical linear Boltzmann

equation to hold.
• ε � ρ2d−1: Here we can prove the analogs of the above results for zero

external fields, where the in the transition probability the cylinder is replaced
by a “parabolic tube”.

z

ξ

w
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