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Interest

We are interested in the populational evolution of a family of
rodents, whose scientific name is ”Microtus Epiroticus”.
These rodents were introduced in the Svaldarb island, Norway,
between 1930 and 1960, from Russia (N. Yoccoz),

♣ Why? What is the motivation?

⋆ Essentialy they do not have significant predators.
⋆ The number of individuals per year presents considerable
oscilations.
⋆ Food is not a determinant factor to these oscilations.
♣ How to understand??



Microtus Epiroticus

Figure: The rodent.
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Figure: Microtus Praire.



The habitat

Figure: The habitat.
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How to estimate the population

Procedure: capture, mark, release, catch, count the number of
marked. Compare, within the recaptured, those whom were
not marked. It is utilized a quite rigourous protocol to do this.
It is assumed:
(1) the probability of cath a rodent does not depend on having
been catched before.
(2) the population is big enough so that if n rodents are
catched, the distribution of the marked follows a binomial law.
(3) repeat the experiment many times.
(4) the experiments are independent.

Following these rules, the initial number N of individuals can
be estimated.



Distribution of the population by year
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The model proposed to govern the evolution of this population
is given by the integral equation

N(t) =

∫ A1

A0

N(t − a)m(N(t − a))mρ(t − a)S(a)da . (1)

⋆ t : time in years and N(t): number of sexually active
females at time t.
⋆ A0: age of maturity of a female and A1 the maximal age
expected for a Microtus Epiroticus.
⋆ m(N): annual individual reproduction rate for a population
of N individuals.
⋆ mρ(t): the reproduction probability at time t of the year.
⋆ S(a):probability to survive up to a years.
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Values of the parameters chosen

The model take into account:

⋆ the ratio between males and females is 1 : 1,
⋆ the mean age at which a female has her first puppy is 50
days, i.e., A0 ≈ 0.14 years. In general it is considered that
0.1 ≤ A0 ≤ 0.2.
⋆ the maximum age that an individual can achieved is 2
years, i.e., A1 = 2 years.
⋆ the seasonal factor mρ(t) varies sharply from 0 in the
winter to 1 from spring through fall. Thus, we take ρ = 0.30
and adopt to mρ(t)

mρ(t) =

{

0 if 0 ≤ t mod (1) < ρ
1 if ρ ≤ t mod (1) < 1



⋆ the annual rate of individual reproduction m(N) is very
high when N(t) is small: order m0 v 30 and m(N(t)) decays
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−γ if N > 1
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abruptly when N(t) grows. Following [Ar], we define m(N) by
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Discretization

We study the discrete model.
We divide the year into p equal parts ( p = 100).
As A1 = 2 years, we take N(t), for t ∈ [0, A1] = [0, 2], as a
vector with A1p + 1 = 2p + 1 coordinates, and choose t = 0
as the initial time and t = 2p corresponds to A1 = 2.
Since p = 100 we obtain a vector with 201 coordinates.
The probability of outlive j

p
years is given by

S(j) =

{

1 − j

2p+1
, for j = 0, 1, 2 . . . , 2p

0 for j < 0 or j > 2p
,

where A1p = 2p.
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Given an initial vector (N0, N1, N2, . . . , N2p−1, N2p) ∈ IR2p+1,
the evolution of N(t) = Nt, t ∈ ZZ, is governed by

Nt =

A1 p−1
∑

h=A0 p

Nt−hm(Nt−h)mρ(t − h)S(h)∆h (2)

=
1

p

A1 p−1
∑

h=A0 p

Nt−hm(Nt−h)mρ(t − h)S(h) .



Nt depends on

z The value Nt depends only on the values of N in
[t − A1; t − A0].



Nt depends on

z The value Nt depends only on the values of N in
[t − A1; t − A0].

z Knowing the value of Nt for t ∈ [−A1p, 0] (two years of
observations) allow to predict the value of Nt for t ∈ [0, A0p].



Nt depends on

z The value Nt depends only on the values of N in
[t − A1; t − A0].

z Knowing the value of Nt for t ∈ [−A1p, 0] (two years of
observations) allow to predict the value of Nt for t ∈ [0, A0p].

z When p = 100 and A0 = 0.14 means that the knowledge of
(N0, N1, N2, . . . , N200) allows to calculate N201, . . . , N214.



Nt depends on

z The value Nt depends only on the values of N in
[t − A1; t − A0].

z Knowing the value of Nt for t ∈ [−A1p, 0] (two years of
observations) allow to predict the value of Nt for t ∈ [0, A0p].

z When p = 100 and A0 = 0.14 means that the knowledge of
(N0, N1, N2, . . . , N200) allows to calculate N201, . . . , N214.

z Recursively we can compute Nj for all j ≥ 0.
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The dynamical system.

Equation (2) defines a discrete dynamical system

T : IR2p+1 → IR2p+1

(N0, N1, . . . , N2p) 7→ T (N0, N1, . . . , N2p) = (Np, Np+1, . . . , N3p)

Nt =

A1 p−1
∑

h=A0 p

Nt−hm(Nt−h)mρ(t − h)S(h)∆h.

Starting goals:

(1) The population does not extinguish.

(2) The map T has an attractor Λ.

(3) There is a fixed point p ∈ Λ.

(4) The map DT (p) is non singular.



Upper bound to T

Under certain reasonable conditions, for all t = 1, 2, . . . , A0p, it holds

Nt ≤ Nmax := m0

(

(A1 − A0)
2

2A1

)

.

When A1 = 2, A0 = 0.18, m0 = 50, Nmax ≈ 41.4 .
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Permanence

A system T (t) is permanent if for every positive initial T0,
∃ ǫ > 0 s. t. T (t) satisfies

lim inft≥0 T (t) ≥ ǫ .

The system given by equation

Nt =

A1 p−1
∑

h=A0 p

Nt−hm(Nt−h)mρ(t − h)S(h)∆h

is permanent.



Existence of a compact positive invariant

♠ There is t0 > 0 such that, for all t ≥ t0

c0m0

2
N1−γ

max ≤ Nt ≤ Nmax.

In particular, T takes the compact set

K =
[c0m0

2
N1−γ

max, Nmax

]pA1+1

on itself .
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Let H be the set of positive vectors

H =
{

N = (N0, N1, . . . , N2p) ∈ IR2p+1| ∀ j : Nj > 0
}

.

T : H → H is Lipschitz.

(Fixed point) There exists p ∈ K such that T (p) = p.
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Existence of an attractor Λ

Λ =
⋂

n≥0 T n(K) is un atractor for T , and the fixed point p ∈ Λ.

The basin of attraction Bs(Λ) of Λ is simply connected.
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DT (p) is non singular.

S(2p − 1) > 0 =⇒ DT (x) is non singular.

♠ What is the meaning that the probability of survival
S(2p − 1) is positive?

We interpret that as: the older generations in the vector
N = (N0, N1, . . . , NA1p) has an effective influence in the next
population vector T (N), that represents the next geration of
Microtus Epiroticus. .



Now comes the numerical approuch.

For the parameters studied by S. Arlot: A0 = 0.18, ρ = 0.30,
γ = 8.25:

the fixed point p of T is hyperbolic.

A0: age of maturity of a female
ρ: size of winter, appears in the sazonal factor mρ

γ: appears at the sazonal factor

mρ(t) =

{

0 if 0 ≤ t mod (1) < ρ
1 if ρ ≤ t mod (1) < 1



Numerical approuch.

⋆ Assuming that the calculations made by Arlot are
sufficiently precise, the eigenvalues λi, 1 ≤ i ≤ 2p, and µ of
DT (p) satisfy |λj| << 1 for all j = 1, . . . , 2p, and
µ < 0, |µ| > 1.
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⋆ Assuming that the calculations made by Arlot are
sufficiently precise, the eigenvalues λi, 1 ≤ i ≤ 2p, and µ of
DT (p) satisfy |λj| << 1 for all j = 1, . . . , 2p, and
µ < 0, |µ| > 1.

Since DT (p) is non singular

⇓

p is hyperbolic & W s(p) is codimension one.
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Arlot highlights the interest in studying the case where the
parameters are A0 = 0.18, ρ = 0.30, γ = 8.25: the numerical
simulations indicate that the unstable manifold is dense in Λ
and that Λ is transitive.
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parameters are A0 = 0.18, ρ = 0.30, γ = 8.25: the numerical
simulations indicate that the unstable manifold is dense in Λ
and that Λ is transitive.
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The closure of W u(p)
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When W u(p) = Λ

If there is q ∈ W u(p) such that W u(q) = Λ

⇓

Λ is topologically mixing
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Sensitiveness with respect to initial data.

f : K → K is sensitive with respect to initial conditions if ∃
α > 0 such that, ∀ x ∈ K and ∀ neighborhood U(x),
∃ y ∈ U(x) and n ∈ IN such that

dist(fn(x), fn(y)) > α.

For A0 = 0.18, ρ = 0.30, γ = 8.25, T is sensitive.

⇓

Thus, it is not possible to predict the behavior of the evolution
of the population.
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Entropy.

The Kolmogorov entropy of an attractor can be considered as
a measure for the rate of information loss along the attractor,
or as a measure for the degree of predictability of points along
the attractor given an initial data.

In general, a positive entropy is considered as a conclusive
proof that the dynamical system is chaotic. A zero entropy

represents a constant or a regular phenomena that can be
represented by a fixed point or a periodic attractor.
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Positive entropy.

For A0 = 0.18, ρ = 0.30, γ = 8.25, T 2/Λ has positive entropy.

⇓

T/Λ has positive entropy.

From the data, K ⋍ 0.37.
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Existence of a homoclinic point

z Next Gol: numerical evidence of a homoclinic point for the
parameters A0 = 0.18, ρ = 0.30, γ = 8.25.

To verify this fact we proceed as follows:
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Search for candidate to fixed point

We search the fixed point whose existence was already proved.

Procedure:
♣ Take 400 datafiles , each Qi with points in the basin of Λ
(take randon data, iterate ten thousand times by T 2 and
consider only the sucessive images from that on).
⋆⋆ For each file Qi we take points pj ∈ Qi minimizing
dist(x, T2(x)), x ∈ Qi.
⋆ Chose a certain group G of points pj , 0 ≤ j ≤ m, and
search in the simplex
S = {b0p1 + b1p2 + · · ·+ bmpm,

∑

i bi = 1, pj ∈ Q} those
points minimizing dist(x, T2(x)), x ∈ S.
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The point p̂ found at ⋆⋆ above is the approximate fixed
point to T 2 that we consider.
⋆ As seen before, DT (p) is non singular, has a unique
negative eigenvalue µ with |µ| > 1.

Thus, p is a hyperbolic periodic point with codimension 1
stable manifold.
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⋆ Since the eigenvalue µ is negative, the iterates T 2k(p) and
T 2(k+1)(p) alternate with respect to W s(p).

⋆ Hence, the segment L joing these two points cuts W s(p).

⋆ Applying the λ-Lemma, we can assume that for n big
enough, T 2n(L) is arbitrarily close to W s(p).

T 2n(L) = W , n = 629, is a good aproximated unstable manifold.



The aproximated unstable manifold
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Figure: T 2n(L) = W ≈ W u(p)

From the data we obtain that the length of T 2n(L) = W is
≈ 5.10−4.
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Search candidate to homoclinic point.

⋆ Divide W into ten thousand equal parts. The extreme
points ej of this partitionare to a distance ≈ 5.10−8.
⋆ We obtain, for j = 5102, that (T 2)629(ej) is at a distance
⋍ 2, 26.(10)−4 of p, i.e., dist(T2.(418)(e4592), p) ∼ 2, 26.(10)−4.
⋆ We take this iterate (T 2)629(ej) as a good candidate and
we denote it by E.
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The homoclinic point is transverse

⋆ take the interval I0 of the partition of W whose medium
point is e0.
⋆ Iterate ten times e0 and the extreme points of I0. Store
these data.
⋆ Denote T 10(I0) by I1, repeat up to the 1258-iterate.
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Transverse

⋆ Denote by Im0
this last iterate and write Im0

= [r, l].
Observe that (E = T 2)629(e0) ∈ Im0
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⋆ Denote by Im0
this last iterate and write Im0

= [r, l].
Observe that (E = T 2)629(e0) ∈ Im0

.

Consider the vectors: Vr = ~pr and Vl = ~pl.
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We check numerically

Angle between Vr and Vl ≃ 68◦.

Angle between T 2k(Vr) and T 2k(Vl) approach π when k ր.
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Numerical evidence

Thus, numerically evidence of the existence of a homoclinic point.

⇓

⋆ the entropy of the system is positive

⋆ there are ∞-many periodic points, etc.

Thus, numerically evidence that the system is chaotic.
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A homoclinic point in Λ-II.
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Figure: Iterates of a small segment at the homoclinic point
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Conclusions

♠ Basin of attraction Bs(Λ) of Λ is simply connected.

♠ T/Bs(Λ) is a diffeo and there is a fixed point p ∈ Λ such
that DT (p) has a unique negative real eigenvalue µ with
|µ| > 1 and all the other satisfies 0 < |λi| << 1. Thus, there
is a a neighborhood U , p ∈ U , such that T/U is sectionally
dissipative.
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Question 3

is Λ robustly transitive ?

YES + not sect. dissipative + sect. dissipative near p

⇓

TΛ = E1 + ... + Ek−1 + Eu, dim(Eu) = 1 + Bs(Λ) simp. connect.

⇓ (Contradicts Diaz-Pujals-Ures )

Λ is not robustly transitive.



Conclusion

These analysis suggest that any “robustness” of the attractor,
has to hold in the framework of non uniform hyperbolicity.

Thus, the propose to future work is:



Propose to future work

Since dim(Eu) = 1, on the light of the Henon attractor, we
would like to obtain a 1-dimensional dynamics, adding
hipotheses on the probability of surviving S(a): instead of
decreasing linearly, decreasing super fast.



Propose to future work

Since dim(Eu) = 1, on the light of the Henon attractor, we
would like to obtain a 1-dimensional dynamics, adding
hipotheses on the probability of surviving S(a): instead of
decreasing linearly, decreasing super fast.

Thus, the evolution would have a strong influence of the
nearby generation that can procreate (age ≈ A0), followed by
a much smaller influence on subsequent generations.



Propose to future work

Since dim(Eu) = 1, on the light of the Henon attractor, we
would like to obtain a 1-dimensional dynamics, adding
hipotheses on the probability of surviving S(a): instead of
decreasing linearly, decreasing super fast.

Thus, the evolution would have a strong influence of the
nearby generation that can procreate (age ≈ A0), followed by
a much smaller influence on subsequent generations.

Verify that the one-dimensional map that arises for A0 = 0.18,
ρ = 0.30, γ = 8.25, and S(a) as above, is transitive and good
enough to push the analysis to the n-dimensional case.



Propose to future work

On the light of the Henon attractor, we would like to obtain a
1-dimensional dynamics, adding hipotheses on the probability
of surviving S(a): instead of decreasing linearly, decreasing
super fast.



Propose to future work

On the light of the Henon attractor, we would like to obtain a
1-dimensional dynamics, adding hipotheses on the probability
of surviving S(a): instead of decreasing linearly, decreasing
super fast.

Thus, the evolution would have a strong influence of the
nearby generation that can procreate (age ≈ A0), followed by
a much smaller influence on subsequent generations.



Propose to future work

On the light of the Henon attractor, we would like to obtain a
1-dimensional dynamics, adding hipotheses on the probability
of surviving S(a): instead of decreasing linearly, decreasing
super fast.

Thus, the evolution would have a strong influence of the
nearby generation that can procreate (age ≈ A0), followed by
a much smaller influence on subsequent generations.

Verify that the one-dimensional map that arises for A0 = 0.18,
ρ = 0.30, γ = 8.25, and S(a) as above, is transitive and good
enough to push the analysis to the n-dimensional case.



References
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Université Paris Sud XI (2004) available at
http://www.di.ens.fr/ ˜ arlot/

Grassberger, P. and Procaccia, I. Characterization of

strange attractors, Physical Review Letters, vol. 50, n. 5,
346–348, 1983.

Schouten, J. C., Takens, F., van den Bleek,C. M.
Maximum-likelihood estimation of the entropy of an

attractor, Physical Review E, vol. 49, n. 1, 126–129, 1994.



End

Many thanks to the audience



End

Many thanks to the audience


	

