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Notions and notations: Lorentz Process

Lorentz process - billiard dynamics (uniform motion + specular
reflection) (2, T, u)

o Q=RA \ U2, O; is the configuration space of the Lorentz
flow (the billiard table), where the closed sets O; are pairwise
disjoint, strictly convex with C3—smooth boundaries
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Notions and notations: Lorentz Process

Lorentz process - billiard dynamics (uniform motion + specular
reflection) (2, T, u)
o Q=RA \ U2, O; is the configuration space of the Lorentz
flow (the billiard table), where the closed sets O; are pairwise
disjoint, strictly convex with C3—smooth boundaries

@ Q= Q x 54 is its phase space for the billiard ball map (where
Q@ = 0Q and Sy is the hemisphere of outgoing unit velocities)

o T :Q — Q its discrete time billiard map (the so-called
Poincaré section map)

@ 4 the T-invariant (infinite) Liouville-measure on Q
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Notions and notations: Periodic Lorentz — Sinai

Billiard

If the scatterer configuration {O;}; is Z9-periodic, then the
corresponding dynamical system will be denoted by

(Qper = Qper X Sy, Tpers ftper)- It makes sense then to factorize it
by Z? to obtain a Sinai billiard (Qp = Qo x Sy, To, ito). The
natural projection Q — @ (and analogously for Qe and for Qg)
will be denoted by .
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Notions and notations: Periodic Lorentz — Sinai

Billiard

If the scatterer configuration {O;}; is Z9-periodic, then the
corresponding dynamical system will be denoted by

(Qper = Qper X Sy, Tpers ftper)- It makes sense then to factorize it
by Z? to obtain a Sinai billiard (Qp = Qo x Sy, To, ito). The
natural projection Q — @ (and analogously for Qe and for Qg)
will be denoted by .

Finite horizon (FH) versus infinite horizon (coH)
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Why are local perturbations/ocH interesting?

Local perturbations

@ Lorentz, 1905: described the transport of conduction electrons
in metals (still in the pre-quantum era). Natural to consider
models with local impurities;

@ Non-periodic models (M. Lenci, '96-, Sz., '08:
Penrose-Lorentz process).

ooH
@ Hard ball systems in the nonconfined regime have coH

@ Crystals

@ Non-trivial asymptotic behavior and new kinetic equ.
(Bourgain, Caglioti, Golse, Wennberg, ...; '98-,
Marklof-Stréombergsson, '08-).



Introduction

Stochastic properties: Correlation decay

Let f,g M(= Qo, billiard phase space) — RY be piecewise Holder.

@ With a given a,: n>1 (M, T, ) has {a,},-correlation decay
if 3C = C(f, g) such that Vf, g Holder and Vn > 1

‘/ f(go T”)du/ fdu/ gdu‘ < Cap
M M M

@ The correlation decay is exponential (EDC) if 3C; > 0 such
that Vn > 1
an < exp (—Gon).

@ The correlation decay is stretched exponential (SEDC) if
Ja € (0,1), C; > 0 such that Vn > 1

ap < Crexp (—Gn®).
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Diffusively scaled variant

Assume {g, € R9n > 0} is a random trajectory. Then its
diffusively scaled variant € C[0,1] (or € C[0,00]) is defined as
follows: for N € Z denote

Wn(%) = % (0<j<N or je€Zy) and define otherwise

Wp(t)(t € [0,1] or R;) as its piecewise linear, continuous
extension.
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Diffusively scaled variant

Definition

Assume {g, € R9n > 0} is a random trajectory. Then its
diffusively scaled variant € C[0,1] (or € C[0,00]) is defined as
follows: for N € Z denote

WN(ﬁ) — % (0<j<N or je€Zy) and define otherwise
Wp(t)(t € [0,1] or R;) as its piecewise linear, continuous
extension.

E. g k(x) = mq(Tx) — mq(x) : M — R, the free flight vector of a
Lorentz process.

From now on g, = gn(x) = Z;é k(Tkx), n=0,1,2,... is the
Lorentz trajectory.
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Stochastic properties: CLT & LCLT

® CLT and Weak Invariance Principle

Wi(t) = Wp(t),

the Wiener process with a non-degenerate covariance matrix
D2 = ,u,o(lio X Ho) = 22?21 ,u,o(/<;0 & Iin).
@ Local CLT Let x be distributed on Qg according to pg. Let

the distribution of [g,(x)] be denoted by T,. There is a
constant ¢ such that

lim nT, — c !/

n—oo
where / is the counting measure on the integer lattice Z? and
— stands for vague convergence.

In fact,cl= —1
' 27V det D2
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2D, Periodic case: Some Results

SEDC | EDC | CLT | LCLT
B-S, '81 M-partitions X X
B-Ch-S, '91 M-sieves X X
Y, '98 M-towers X X
Sz-V, '04 X

SEDC - Stretched Exponential Decay of Correlations
EDC - Exponential Decay of Correlations

CLT - Central Limit Theorem

LCLT - Local CLT
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Locally perturbed FH Lorentz

@ Sinai's problem, '81: locally perturbed FH Lorentz

@ Sz-Telcs, '82: locally perturbed SSRW for d = 2 has the same
diffusive limit as the unperturbed one

Idea: local time is O(log n) thus the /n scaling eates
perturbation up
Method:

@ there are log n time intervals spent at perturbation
@ couple the intervals spent outside perturbations to SSRW
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Locally perturbed FH Lorentz

Dolgopyat-Sz-Varji, 09: locally perturbed FH Lorentz has the
same diffusive limit as the unperturbed one
Method: Martingale method of Stroock-Varadhan

Tools:
@ Chernov-Dolgopyat, 05-09:

e standard pairs
@ growth lemma
@ Young-coupling

@ Sz-Varju, 04: local CLT for periodic FH Lorentz
@ Dolgopyat-Sz-Varjd, 08: recurrence properties of FH Lorentz

(extensions of Thm's of Erdds-Taylor and Darling-Kac from
SSRW to FH Lorentz)



ocoH Lorentz
[ ]

ooH periodic Lorentz

Reminder: r(x) = my(Tx) — mg(x) : M — R2, the free flight vector
of a Lorentz process.

Gn = qn(x) = S.7_5 #(T¥x) is the Lorentz trajectory.
Now: for N € Z, denote

J 9 : ;
Wyl =] =——— 0</j<N Z
N<N> Nlog NV (0<j< or j€Zy)

and define otherwise Wy (t)(t € [0,1] or Ry) as its piecewise
linear, continuous extension.
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ooH periodic Lorentz

o Bleher, '92:
o E|n(x)]?> =
o E|x(x)k(T"x)| < oo if [n| > 1.
@ Heuristic arguments for /N log N scaling.
o Sz-Varju, 07:
@ Rigorous proof for Bleher's conjecture (method: Young's
towers & Fourier transform of P-F operator)
@ Moreover local limit law & Recurrence
@ Exact form of the limiting covariance

@ Melbourne, '08, O(1/t) corr. decay rate for the flow

@ Chernov-Dolgopyat, '10: EDC & global LT for £ (method:
Ch-D’s standard pairs & Bernstein's method of freezing)
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Martingale approach

a la Stroock-Varadhan

Since the limiting process is a Brownian motion, it is characterized
by the fact that

-1 / S asDasd(W(s))ds (1)

ab=1,2

is a martingale for C2—functions of compact support.

By Stroock-Varadhan it suffices to show that — the limiting
process W(t) of any convergent subsequence of the processes in
question — the process

o(W(2) - / S s Dasd(W(s))ds (2)

ab=1,2

is a martingale for C2—functions of compact support.
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Locally perturbed FH 1

Let ¢ be a smooth function of compact support. Denote n = Nt
and choose a small > 0. Let L = N*. Let mp, = pL+2z (p € Z4)
where z will be chosen later. Denote

Aj = qj+1— g

By summing up second order Taylor-expansions of

o(%) o ()

EMCICARYE S S ICHCR Y

Jj=mp+1
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Raster

Mo Mo+ ms, M+
O oo o Nt
my+m, ]
2

n=Nt L=N* («a>0) mp=pl+z 0<z=mp<lL
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Locally perturbed FH 2

() (%) - 2,7 (%) )
)

3 00()

+—
Jj=mp+1

N

SRICOR

mp_1<k<_]

+O(L2N73/2),
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Standard pair

@ A connected smooth curve v C € is called an unstable curve

if at every point x € 7 the tangent space 7,y belongs to the
unstable cone Cy.

® A standard pairis a pair £ = (~y, p) where ~y is a homogeneous
curve and p is a homogeneous density on 7.
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Growth lemma, Ch-D

@ If¢ = (~,p) is a standard pair, then

A o TO Z CanEgan

where con >0, Y, Can =1 and lon = (Yan, pan) are standard
pairs where Yon = Yn(xa) for some x, € v and pqn is the
pushforward of p up to a multiplicative factor.

@ If n > (3] loglength(¥)|, then

Z Can < ﬁ45-

length(£an)<e
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Moment asymptotics, Ch-D

Let £ be a standard pair, A a Holder function. Take n such that

| log length(¢)| < n%/2=9.

@ 3G, >0 0 < 1s. t ifn> Cloglength(?)|, then

< 6"

Eg(AO Ton)—/Ad,u,o

@ Let A, B € H with zero mean. Denote
An(x) = 375 A(T4x). Then
E¢(A,Bn) = noa g + O(| log? length(£)|)

where

OAB = Z / TJX)dMO( )-

_jf—OO
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A Markov-Taylor expansion

N

() (%) - 2,7 (%) )
)

5050

+—
Jj=mp+1

SRICOR

mp_1<k<j

+O(L2N73/2),
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Decompositions

Consider the Markov decomposition
Ef(Ao T™) = caBy, (Ao T{me1tme)2) = 73
o

— AaL ) _ q0
whereA_¢<m> (b(m),and
Ty is the sum over « such that |gm, ,| > KL and

To estimate 77 split it 7{ + 7" where 7/ (the main term!)
contains as with length(£,) > N~1%.

7/’ can be handled by using the growth lemma.
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A priori bound and main term

7, can be handled by using an a priori bound

Fix S, a finite collection of scatterers. There is a constant K

E¢(Card(j < n:qj € S)) < Klog'™* N

where £ > 0.

For the main term use the Markov-Taylor expansion:

71/ — 77in + ,Tquad + ,Trem

Its terms can be handled by using the Markov decomposition and
the moment asymptotics.
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Thm for locally perturbed FH, D-Sz-V, '09

For finite modifications of the FHLP, as N — oo,
Wh(t) = Ws2(t) (weak convergence in C[0,c]), where Ws2(t) is
the Brownian Motion with the non-degenerate covariance matrix
Y2, The limiting covariance matrix coincides with that for the
unmodified periodic Lorentz process.
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Geometry & Probability

Corridors

Jump length for discrete version: P(A; = k) ~ const.%

By using truncation a la Ch-D: Ay, = Min{Ax, /N log” N}

E|Agl" = O(N"Z log? "2 Ny if h>3

= O(log N) for h=2 and = O(1) for h < 1.

Paulin-Sz., '09: for random walks

@ a with jumps belonging to the non-standard domain of
attraction of Gaussian
@ and with local impurities

the same limit behavior holds as for the periodic RW

Nandori, '09: if impurity is in 0, but it also acts when flying
through, then 'local time’ for 0 is O(n'/9).



ocoH Lorentz
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Martingale method for periodic Lorentz

growth lemma holds (in fact, also for perturbed Lorentz)
moment estimates and EDC hold by Ch-D
apply the Markov-Taylor expansion to g; = ZJ,'(:lAk

the error terms can be handled by using the bounds on
E|Ax|", and some Holdering;

Result: third proof for global LT for coH periodic Lorentz.
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