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Notions and notations: Lorentz Process

Lorentz process - billiard dynamics (uniform motion + specular
reflection) (Ω,T , µ)

Q̂ = R
d \ ∪∞

i=1Oi is the configuration space of the Lorentz
flow (the billiard table), where the closed sets Oi are pairwise
disjoint, strictly convex with C3−smooth boundaries

Ω = Q × S+ is its phase space for the billiard ball map (where
Q = ∂Q̂ and S+ is the hemisphere of outgoing unit velocities)

T : Ω → Ω its discrete time billiard map (the so-called
Poincaré section map)

µ the T -invariant (infinite) Liouville-measure on Ω
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Notions and notations: Periodic Lorentz → Sinai
Billiard

If the scatterer configuration {Oi}i is Z
d -periodic, then the

corresponding dynamical system will be denoted by
(Ωper = Qper × S+,Tper , µper ). It makes sense then to factorize it
by Z

d to obtain a Sinai billiard (Ω0 = Q0 × S+,T0, µ0). The
natural projection Ω → Q (and analogously for Ωper and for Ω0)
will be denoted by πq.

Finite horizon (FH) versus infinite horizon (∞H)
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Why are local perturbations/∞H interesting?

Local perturbations

Lorentz, 1905: described the transport of conduction electrons
in metals (still in the pre-quantum era). Natural to consider
models with local impurities;

Non-periodic models (M. Lenci, ’96-, Sz., ’08:
Penrose-Lorentz process).

∞H

Hard ball systems in the nonconfined regime have ∞H

Crystals

Non-trivial asymptotic behavior and new kinetic equ.
(Bourgain, Caglioti, Golse, Wennberg, ...; ’98-,
Marklof-Strömbergsson, ’08-).
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Stochastic properties: Correlation decay

Let f , g M(= Ω0, billiard phase space) → R
d be piecewise Hölder.

Definition

With a given an : n ≥ 1 (M,T , µ) has {an}n-correlation decay
if ∃C = C (f , g) such that ∀f , g Hölder and ∀n ≥ 1

∣

∣

∣

∣

∫

M

f (g ◦ T n)dµ −
∫

M

fdµ

∫

M

gdµ

∣

∣

∣

∣

≤ Can

The correlation decay is exponential (EDC) if ∃C2 > 0 such
that ∀n ≥ 1

an ≤ exp (−C2n).

The correlation decay is stretched exponential (SEDC) if
∃α ∈ (0, 1),C2 > 0 such that ∀n ≥ 1

an ≤ C1 exp (−C2n
α).
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Diffusively scaled variant

Definition

Assume {qn ∈ R
d |n ≥ 0} is a random trajectory. Then its

diffusively scaled variant ∈ C [0, 1] (or ∈ C [0,∞]) is defined as
follows: for N ∈ Z+ denote
WN( j

N
) =

qj√
N

(0 ≤ j ≤ N or j ∈ Z+) and define otherwise

WN(t)(t ∈ [0, 1] or R+) as its piecewise linear, continuous
extension.

E. g. κ(x) = πq(Tx) − πq(x) : M → R
d , the free flight vector of a

Lorentz process.
From now on qn = qn(x) =

∑n−1
k=0 κ(T kx), n = 0, 1, 2, . . . is the

Lorentz trajectory.
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Stochastic properties: CLT & LCLT

Definition

CLT and Weak Invariance Principle

WN(t) ⇒ WD2(t),

the Wiener process with a non-degenerate covariance matrix
D2 = µ0(κ0 ⊗ κ0) + 2

∑∞
j=1 µ0(κ0 ⊗ κn).

Local CLT Let x be distributed on Ω0 according to µ0. Let
the distribution of [qn(x)] be denoted by Υn. There is a
constant c such that

lim
n→∞

nΥn → c−1l

where l is the counting measure on the integer lattice Z
2 and

→ stands for vague convergence.
In fact, c−1 = 1

2π
√

detD2
.
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2D, Periodic case: Some Results

SEDC EDC CLT LCLT

B-S, ’81 M-partitions X X

B-Ch-S, ’91 M-sieves X X

Y, ’98 M-towers X X

Sz-V, ’04 X

SEDC - Stretched Exponential Decay of Correlations
EDC - Exponential Decay of Correlations
CLT - Central Limit Theorem
LCLT - Local CLT
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Locally perturbed FH Lorentz

Sinai’s problem, ’81: locally perturbed FH Lorentz

Sz-Telcs, ’82: locally perturbed SSRW for d = 2 has the same
diffusive limit as the unperturbed one

Idea: local time is O(log n) thus the
√

n scaling eates
perturbation up

Method:

there are log n time intervals spent at perturbation
couple the intervals spent outside perturbations to SSRW
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Locally perturbed FH Lorentz

Dolgopyat-Sz-Varjú, 09: locally perturbed FH Lorentz has the
same diffusive limit as the unperturbed one
Method: Martingale method of Stroock-Varadhan

Tools:

Chernov-Dolgopyat, 05-09:

standard pairs
growth lemma
Young-coupling

Sz-Varjú, 04: local CLT for periodic FH Lorentz

Dolgopyat-Sz-Varjú, 08: recurrence properties of FH Lorentz
(extensions of Thm’s of Erdős-Taylor and Darling-Kac from
SSRW to FH Lorentz)
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∞H periodic Lorentz

Reminder: κ(x) = πq(Tx)− πq(x) : M → R
2, the free flight vector

of a Lorentz process.

qn = qn(x) =
∑n−1

k=0 κ(T kx) is the Lorentz trajectory.

Now: for N ∈ Z+ denote

WN

(

j

N

)

=
qj√

N log N
(0 ≤ j ≤ N or j ∈ Z+)

and define otherwise WN(t)(t ∈ [0, 1] or R+) as its piecewise
linear, continuous extension.
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∞H periodic Lorentz

Bleher, ’92:

E|κ(x)|2 = ∞
E|κ(x)κ(T nx)| < ∞ if |n| ≥ 1.
Heuristic arguments for

√
N logN scaling.

Sz-Varjú, 07:

Rigorous proof for Bleher’s conjecture (method: Young’s
towers & Fourier transform of P-F operator)
Moreover local limit law & Recurrence
Exact form of the limiting covariance

Melbourne, ’08, O(1/t) corr. decay rate for the flow

Chernov-Dolgopyat, ’10: EDC & global LT for κ (method:
Ch-D’s standard pairs & Bernstein’s method of freezing)
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Martingale approach
à la Stroock-Varadhan

Since the limiting process is a Brownian motion, it is characterized
by the fact that

φ(W (t)) − 1

2

∫ t

0

∑

ab=1,2

σabDabφ(W (s))ds (1)

is a martingale for C 2−functions of compact support.

By Stroock-Varadhan it suffices to show that — the limiting
process W̃ (t) of any convergent subsequence of the processes in
question — the process

φ(W̃ (t)) − 1

2

∫ t

0

∑

ab=1,2

σabDabφ(W̃ (s))ds (2)

is a martingale for C 2−functions of compact support.
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Locally perturbed FH 1

Let φ be a smooth function of compact support. Denote n = Nt
and choose a small α > 0. Let L = Nα. Let mp = pL + z (p ∈ Z+)
where z will be chosen later. Denote

∆j = qj+1 − qj .

By summing up second order Taylor-expansions of

φ
(

qj+1√
N

)

− φ
(

qj√
N

)

:

φ

(

qmp+1√
N

)

− φ

(

qmp√
N

)

=

mp+1
∑

j=mp+1

1√
N

〈

Dφ

(

qj√
N

)

,∆j

〉

+
1

2

mp+1
∑

j=mp+1

1

N

〈

D2φ

(

qj√
N

)

∆j ,∆j

〉

+O(LN−3/2).
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Raster

mp mp+1mp-1

jmpm +p-1
2

0
m0

Nt

n = Nt L = Nα (α > 0) mp = pL + z 0 ≤ z = m0 < L
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Locally perturbed FH 2

Next

φ

(

qmp+1√
N

)

− φ

(

qmp√
N

)

=

mp+1
∑

j=mp+1

1√
N

〈

Dφ

(

qmp−1√
N

)

,∆j

〉

+
1

N

[

1

2

mp+1
∑

j=mp+1

〈

D2φ

(

qmp−1√
N

)

∆j ,∆j

〉

+
∑

mp−1<k<j

〈

D2φ

(

qmp−1√
N

)

∆k ,∆j

〉

]

+O(L2N−3/2).
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Standard pair

A connected smooth curve γ ⊂ Ω0 is called an unstable curve
if at every point x ∈ γ the tangent space Txγ belongs to the
unstable cone Cu

x .

A standard pair is a pair ℓ = (γ, ρ) where γ is a homogeneous
curve and ρ is a homogeneous density on γ.
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Growth lemma, Ch-D

Theorem

If ℓ = (γ, ρ) is a standard pair, then

Eℓ(A ◦ T n
0 ) =

∑

α

cαnEℓαn
(A)

where cαn > 0,
∑

α cαn = 1 and ℓαn = (γαn, ραn) are standard
pairs where γαn = γn(xα) for some xα ∈ γ and ραn is the
pushforward of ρ up to a multiplicative factor.

If n ≥ β3| log length(ℓ)|, then

∑

length(ℓαn)<ε

cαn ≤ β4ε.



Introduction Planar FH Lorentz Process ∞H Lorentz Martingale method ∞H Lorentz

Moment asymptotics, Ch-D

Theorem

Let ℓ be a standard pair, A a Hölder function. Take n such that
| log length(ℓ)| < n1/2−δ.

∃C1,C2 > 0 θ < 1 s. t. if n > C1| log length(ℓ)|, then

∣

∣

∣

∣

Eℓ(A ◦ T n
0 ) −

∫

Adµ0

∣

∣

∣

∣

≤ C2θ
n

Let A,B ∈ H with zero mean. Denote
An(x) =

∑n−1
j=0 A(T j

0x). Then

Eℓ(AnBn) = nσA,B + O(| log2 length(ℓ)|)

where

σA,B =

∞
∑

j=−∞

∫

A(x)B(T j
0x)dµ0(x).
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A Markov-Taylor expansion

φ

(

qmp+1√
N

)

− φ

(

qmp√
N

)

=

mp+1
∑

j=mp+1

1√
N

〈

Dφ

(

qmp−1√
N

)

,∆j

〉

+
1

N

[

1

2

mp+1
∑

j=mp+1

〈

D2φ

(

qmp−1√
N

)

∆j ,∆j

〉

+
∑

mp−1<k<j

〈

D2φ

(

qmp−1√
N

)

∆k ,∆j

〉

]

+O(L2N−3/2).
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Decompositions

Consider the Markov decomposition

Eℓ(A ◦ Tmp) =
∑

α

cαEℓα
(A ◦ T (mp−1+mp)/2) = T1 + T2

where A = φ
(

qL√
N

)

− φ
(

q0√
N

)

, and

T1 is the sum over α such that |qmp−1 | ≥ KL and
T2 is the sum over α such that |qmp−1 | < KL.

To estimate T1 split it T ′
1 + T ′′

1 where T ′
1 (the main term!)

contains αs with length(ℓα) > N−100.

T ′′
1 can be handled by using the growth lemma.
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A priori bound and main term

T2 can be handled by using an a priori bound

Lemma

Fix S, a finite collection of scatterers. There is a constant K̃

Eℓ(Card(j ≤ n : qj ∈ S)) ≤ K̃ log1+ξ N

where ξ > 0.

For the main term use the Markov-Taylor expansion:

T ′
1 = Tlin + Tquad + Trem

Its terms can be handled by using the Markov decomposition and
the moment asymptotics.
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Thm for locally perturbed FH, D-Sz-V, ’09

Theorem

For finite modifications of the FHLP, as N → ∞,
WN(t) ⇒ WΣ2(t) (weak convergence in C [0,∞]), where WΣ2(t) is
the Brownian Motion with the non-degenerate covariance matrix
Σ2. The limiting covariance matrix coincides with that for the
unmodified periodic Lorentz process.
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Geometry & Probability

Corridors

Jump length for discrete version: P(∆j = k) ∼ const. 1
k3

By using truncation à la Ch-D: ∆̂k = Min{∆k ,
√

N logβ N}

E|∆̂k |h = O(N
h−2

2 logβ(h−2) N) if h ≥ 3

= O(log N) for h = 2 and = O(1) for h ≤ 1.

Paulin-Sz., ’09: for random walks

a with jumps belonging to the non-standard domain of
attraction of Gaussian
and with local impurities

the same limit behavior holds as for the periodic RW

Nándori, ’09: if impurity is in 0, but it also acts when flying
through, then ’local time’ for 0 is O(n1/6).
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Martingale method for periodic Lorentz

growth lemma holds (in fact, also for perturbed Lorentz)

moment estimates and EDC hold by Ch-D

apply the Markov-Taylor expansion to q̂j = Σj
k=1∆̂k

the error terms can be handled by using the bounds on
E|∆̂k |h, and some Höldering;

Result: third proof for global LT for ∞H periodic Lorentz.
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