Introduction	Planar FH Lorentz Process	∞ H Lorentz	Martingale method	∞ H Lorentz

(Super)diffusive asymtotics for perturbed Lorentz or Lorentz-like processes

Domokos Szász

Budapest University of Technology joint w. Péter Nándori and Tamás Varjú

Hyperbolic Dynamical Systems in the Sciences

INdAM, Corinaldo, June 1, 2010

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Introduction ••••••	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method	∞ H Lorentz 00
A Lorent	z orbit			

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with \mathcal{C}^3 -smooth boundaries
- $\Omega = Q \times S_+$ is its phase space for the billiard ball map (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)

- $T: \Omega \to \Omega$ its discrete time billiard map (the so-called Poincaré section map)
- μ the *T*-invariant (infinite) Liouville-measure on Ω

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with \mathcal{C}^3 -smooth boundaries
- $\Omega = Q \times S_+$ is its phase space for the billiard ball map (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)

- $\mathcal{T}: \Omega \to \Omega$ its discrete time billiard map (the so-called Poincaré section map)
- μ the *T*-invariant (infinite) Liouville-measure on Ω

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with C^3 -smooth boundaries
- $\Omega = Q \times S_+$ is its phase space for the billiard ball map (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)

- $T: \Omega \to \Omega$ its discrete time billiard map (the so-called Poincaré section map)
- μ the *T*-invariant (infinite) Liouville-measure on Ω

- $\hat{Q} = \mathbb{R}^d \setminus \bigcup_{i=1}^{\infty} O_i$ is the configuration space of the Lorentz flow (the billiard table), where the closed sets O_i are pairwise disjoint, strictly convex with C^3 -smooth boundaries
- $\Omega = Q \times S_+$ is its phase space for the billiard ball map (where $Q = \partial \hat{Q}$ and S_+ is the hemisphere of outgoing unit velocities)

- $T: \Omega \to \Omega$ its discrete time billiard map (the so-called Poincaré section map)
- μ the *T*-invariant (infinite) Liouville-measure on Ω

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -**periodic**, then the corresponding dynamical system will be denoted by $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. It makes sense then to **factorize** it by \mathbb{Z}^d to obtain a **Sinai billiard** $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (and analogously for Ω_{per} and for Ω_0) will be denoted by π_q .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Finite horizon (FH) versus infinite horizon (∞ H)

If the scatterer configuration $\{O_i\}_i$ is \mathbb{Z}^d -**periodic**, then the corresponding dynamical system will be denoted by $(\Omega_{per} = Q_{per} \times S_+, T_{per}, \mu_{per})$. It makes sense then to **factorize** it by \mathbb{Z}^d to obtain a **Sinai billiard** $(\Omega_0 = Q_0 \times S_+, T_0, \mu_0)$. The natural projection $\Omega \to Q$ (and analogously for Ω_{per} and for Ω_0) will be denoted by π_q .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Finite horizon (FH) versus infinite horizon (∞H)

Introduction ○○○●○○○	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method	∞ H Lorentz 00
Why are	local perturbati	ons/ ∞ H i	nteresting?	

Local perturbations

- Lorentz, 1905: described the transport of conduction electrons in metals (still in the pre-quantum era). Natural to consider models with local impurities;
- Non-periodic models (M. Lenci, '96-, Sz., '08: Penrose-Lorentz process).

∞H

- \bullet Hard ball systems in the nonconfined regime have ∞H
- Crystals
- Non-trivial asymptotic behavior and new kinetic equ. (Bourgain, Caglioti, Golse, Wennberg, ...; '98-, Marklof-Strömbergsson, '08-).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Stochastic	proportios: Co	rrolation	docay	
Introduction Plan	or FH Lorentz Process	∞ H Lorentz 00	Martingale method	∞ H Lorentz 00

Let $f, g \quad M(=\Omega_0, \text{ billiard phase space}) \to \mathbb{R}^d$ be piecewise Hölder.

Definition

• With a given $a_n : n \ge 1$ (M, T, μ) has $\{a_n\}_n$ -correlation decay if $\exists C = C(f, g)$ such that $\forall f, g$ Hölder and $\forall n \ge 1$

$$\left|\int_{M}f(g\circ T^{n})d\mu-\int_{M}fd\mu\int_{M}gd\mu\right|\leq Ca_{n}$$

The correlation decay is exponential (EDC) if ∃C₂ > 0 such that ∀n ≥ 1

$$a_n \leq \exp\left(-C_2 n\right).$$

• The correlation decay is stretched exponential (SEDC) if $\exists \alpha \in (0, 1), C_2 > 0$ such that $\forall n \ge 1$

$$a_n \leq C_1 \exp\left(-C_2 n^{\alpha}\right).$$

DICC I				
0000000				
Introduction	Planar FH Lorentz Process	∞ H Lorentz	Martingale method	∞ H Lorentz

Diffusively scaled variant

Definition

Assume $\{q_n \in \mathbb{R}^d | n \ge 0\}$ is a random trajectory. Then its *diffusively scaled variant* $\in C[0,1]$ (or $\in C[0,\infty]$) is defined as follows: for $N \in \mathbb{Z}_+$ denote $W_N(\frac{j}{N}) = \frac{q_j}{\sqrt{N}}$ ($0 \le j \le N$ or $j \in \mathbb{Z}_+$) and define otherwise $W_N(t)(t \in [0,1] \text{ or } \mathbb{R}_+)$ as its piecewise linear, continuous extension.

E. g. $\kappa(x) = \pi_q(Tx) - \pi_q(x) : M \to \mathbb{R}^d$, the free flight vector of a Lorentz process. From now on $q_n = q_n(x) = \sum_{k=0}^{n-1} \kappa(T^k x)$, n = 0, 1, 2, ... is the Lorentz trajectory.

0000000		00	0000000000	00
Introduction	Planar FH Lorentz Process	∞ H Lorentz	Martingale method	∞ H Lorentz

Diffusively scaled variant

Definition

Assume $\{q_n \in \mathbb{R}^d | n \ge 0\}$ is a random trajectory. Then its *diffusively scaled variant* $\in C[0,1]$ (or $\in C[0,\infty]$) is defined as follows: for $N \in \mathbb{Z}_+$ denote $W_N(\frac{j}{N}) = \frac{q_j}{\sqrt{N}}$ ($0 \le j \le N$ or $j \in \mathbb{Z}_+$) and define otherwise $W_N(t)(t \in [0,1] \text{ or } \mathbb{R}_+)$ as its piecewise linear, continuous extension.

E. g. $\kappa(x) = \pi_q(Tx) - \pi_q(x) : M \to \mathbb{R}^d$, the free flight vector of a Lorentz process. From now on $q_n = q_n(x) = \sum_{k=0}^{n-1} \kappa(T^k x)$, n = 0, 1, 2, ... is the Lorentz trajectory.

Introduction	Planar FH Lorentz Process	∞ H Lorentz	Martingale method	∞ H Lorentz
000000				

Stochastic properties: CLT & LCLT

Definition

• CLT and Weak Invariance Principle

 $W_N(t) \Rightarrow W_{\mathcal{D}^2}(t),$

the Wiener process with a non-degenerate covariance matrix $\mathcal{D}^2 = \mu_0(\kappa_0 \otimes \kappa_0) + 2 \sum_{j=1}^{\infty} \mu_0(\kappa_0 \otimes \kappa_n).$

 Local CLT Let x be distributed on Ω₀ according to μ₀. Let the distribution of [q_n(x)] be denoted by Υ_n. There is a constant c such that

$$\lim_{n\to\infty}n\Upsilon_n\to\mathbf{c}^{-1}/$$

where I is the counting measure on the integer lattice \mathbb{Z}^2 and \rightarrow stands for vague convergence. In fact, $\mathbf{c}^{-1} = \frac{1}{2\pi\sqrt{\det D^2}}$.

Introduction	Planar FH Lo	orentz Process	∞ H Lorentz	Martingale method	∞ H Lorentz
	000				
<u> </u>			_		

2D, Periodic case: Some Results

		SEDC	EDC	CLT	LCLT
B-S, '81	M-partitions	Х		Х	
B-Ch-S, '91	M-sieves	Х		Х	
Y, '98	M-towers		Х	Х	
Sz-V, '04					Х

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- SEDC Stretched Exponential Decay of Correlations
- EDC Exponential Decay of Correlations
- CLT Central Limit Theorem
- LCLT Local CLT

0000000		00	00000000000	00	
Locally perturbed FH Lorentz					

- Sinai's problem, '81: locally perturbed FH Lorentz
- Sz-Telcs, '82: locally perturbed SSRW for d = 2 has the same diffusive limit as the unperturbed one ldea: local time is O(log n) thus the √n scaling eates perturbation up Method:
 - there are log *n* time intervals spent at perturbation
 - couple the intervals spent outside perturbations to SSRW

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Introduction	Planar FH Lorentz Process ○○●	∞ H Lorentz 00	Martingale method	∞ H Lorentz 00
Locally perturbed FH Lorentz				

Dolgopyat-Sz-Varjú, 09: locally perturbed FH Lorentz has the same diffusive limit as the unperturbed one Method: Martingale method of Stroock-Varadhan

Tools:

- Chernov-Dolgopyat, 05-09:
 - standard pairs
 - growth lemma
 - Young-coupling
- Sz-Varjú, 04: local CLT for periodic FH Lorentz
- Dolgopyat-Sz-Varjú, 08: recurrence properties of FH Lorentz (extensions of Thm's of Erdős-Taylor and Darling-Kac from SSRW to FH Lorentz)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

Introduction	Planar FH Lorentz Process	∞H Lorentz ●○	Martingale method	∞ H Lorentz 00
∞ H perio	odic Lorentz			

Reminder: $\kappa(x) = \pi_q(Tx) - \pi_q(x) : M \to \mathbb{R}^2$, the free flight vector of a Lorentz process.

 $q_n = q_n(x) = \sum_{k=0}^{n-1} \kappa(T^k x)$ is the Lorentz trajectory. Now: for $N \in \mathbb{Z}_+$ denote

$$W_N\left(rac{j}{N}
ight) = rac{q_j}{\sqrt{N\log N}} \qquad (0 \le j \le N \ \ or \ \ j \in \mathbb{Z}_+)$$

and define otherwise $W_N(t)(t \in [0, 1] \text{ or } \mathbb{R}_+)$ as its piecewise linear, continuous extension.

Introduction	Planar FH Lorentz Process	∞H Lorentz ○●	Martingale method	∞ H Lorentz
∞ H perio	odic Lorentz			

- Bleher, '92:
 - $\mathbb{E}|\kappa(x)|^2 = \infty$
 - $\mathbb{E}|\kappa(x)\kappa(T^nx)| < \infty$ if $|n| \ge 1$.
 - Heuristic arguments for $\sqrt{N \log N}$ scaling.
- Sz-Varjú, 07:
 - Rigorous proof for Bleher's conjecture (method: Young's towers & Fourier transform of P-F operator)
 - Moreover local limit law & Recurrence
 - Exact form of the limiting covariance
- Melbourne, '08, O(1/t) corr. decay rate for the flow
- Chernov-Dolgopyat, '10: EDC & global LT for κ (method: Ch-D's standard pairs & Bernstein's method of freezing)

Introduction	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method ●○○○○○○○○○	∞ H Lorentz
Martinga à la Stroock-	ale approach _{Varadhan}			

Since the limiting process is a Brownian motion, it is characterized by the fact that

$$\phi(W(t)) - \frac{1}{2} \int_0^t \sum_{ab=1,2} \sigma_{ab} D_{ab} \phi(W(s)) ds \tag{1}$$

is a martingale for C^2 -functions of compact support.

By Stroock-Varadhan it suffices to show that — the limiting process $\tilde{W}(t)$ of any convergent subsequence of the processes in question — the process

$$\phi(\tilde{W}(t)) - \frac{1}{2} \int_0^t \sum_{ab=1,2} \sigma_{ab} D_{ab} \phi(\tilde{W}(s)) ds$$
(2)

is a martingale for C^2 -functions of compact support.

Introduction	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method ○●○○○○○○○○	∞ H Lorentz 00
Locally r	perturbed FH 1			

Let ϕ be a smooth function of compact support. Denote n = Ntand choose a small $\alpha > 0$. Let $L = N^{\alpha}$. Let $m_p = pL + z$ ($p \in \mathbb{Z}_+$) where z will be chosen later. Denote

$$\Delta_j = q_{j+1} - q_j.$$

By summing up second order Taylor-expansions of $\phi\left(\frac{q_{j+1}}{\sqrt{N}}\right) - \phi\left(\frac{q_j}{\sqrt{N}}\right)$:

$$\phi\left(\frac{q_{m_{p+1}}}{\sqrt{N}}\right) - \phi\left(\frac{q_{m_p}}{\sqrt{N}}\right) =$$

$$\sum_{j=m_{p}+1}^{m_{p+1}} \frac{1}{\sqrt{N}} \left\langle D\phi\left(\frac{q_{j}}{\sqrt{N}}\right), \Delta_{j} \right\rangle + \frac{1}{2} \sum_{j=m_{p}+1}^{m_{p+1}} \frac{1}{N} \left\langle D^{2}\phi\left(\frac{q_{j}}{\sqrt{N}}\right) \Delta_{j}, \Delta_{j} \right\rangle + O(LN^{-3/2}).$$

Introduction	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method ○○●○○○○○○○	∞ H Lorentz 00
Raster				

n = Nt $L = N^{\alpha}$ $(\alpha > 0)$ $m_p = pL + z$ $0 \le z = m_0 < L$

▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

Introduction	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method ○○○●○○○○○○	∞ H Lorentz
Locally p	erturbed FH 2			

Next

$$\phi\left(\frac{q_{m_{p+1}}}{\sqrt{N}}\right) - \phi\left(\frac{q_{m_p}}{\sqrt{N}}\right) = \sum_{j=m_p+1}^{m_{p+1}} \frac{1}{\sqrt{N}} \left\langle D\phi\left(\frac{q_{m_{p-1}}}{\sqrt{N}}\right), \Delta_j \right\rangle$$

$$+ \frac{1}{N} \left[\frac{1}{2} \sum_{j=m_{p}+1}^{m_{p+1}} \left\langle D^{2} \phi \left(\frac{q_{m_{p-1}}}{\sqrt{N}} \right) \Delta_{j}, \Delta_{j} \right\rangle \right. \\ \left. + \sum_{m_{p-1} < k < j} \left\langle D^{2} \phi \left(\frac{q_{m_{p-1}}}{\sqrt{N}} \right) \Delta_{k}, \Delta_{j} \right\rangle \right] \\ \left. + O(L^{2} N^{-3/2}).$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三三 - のへで

Introduction	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method ○○○○●○○○○○○	∞ H Lorentz 00
Standard	pair			

- A connected smooth curve γ ⊂ Ω₀ is called an *unstable curve* if at every point x ∈ γ the tangent space T_xγ belongs to the unstable cone C^u_x.
- A standard pair is a pair ℓ = (γ, ρ) where γ is a homogeneous curve and ρ is a homogeneous density on γ.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣べ⊙

Introduction	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method ○○○○○●○○○○○	∞ H Lorentz 00
Growth I	emma, Ch-D			

Theorem

• If $\ell = (\gamma, \rho)$ is a standard pair, then

$$\mathbb{E}_{\ell}(A \circ T_0^n) = \sum_{\alpha} c_{\alpha n} \mathbb{E}_{\ell_{\alpha n}}(A)$$

where $c_{\alpha n} > 0$, $\sum_{\alpha} c_{\alpha n} = 1$ and $\ell_{\alpha n} = (\gamma_{\alpha n}, \rho_{\alpha n})$ are standard pairs where $\gamma_{\alpha n} = \gamma_n(x_{\alpha})$ for some $x_{\alpha} \in \gamma$ and $\rho_{\alpha n}$ is the pushforward of ρ up to a multiplicative factor.

• If $n \ge \beta_3 |\log \operatorname{length}(\ell)|$, then

$$\sum_{\text{ength}(\ell_{\alpha n}) < \varepsilon} c_{\alpha n} \leq \beta_4 \varepsilon.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

Introduction	Planar FH Lorentz Process	∞ H Lorentz	Martingale method	∞ H Lorentz
			0000000000	
	_			

Moment asymptotics, Ch-D

Theorem

Let ℓ be a standard pair, A a Hölder function. Take n such that $|\log \operatorname{length}(\ell)| < n^{1/2-\delta}$.

• $\exists C_1, C_2 > 0$ $\theta < 1$ s. t. if $n > C_1 |\log \operatorname{length}(\ell)|$, then

$$\left|\mathbb{E}_{\ell}(A\circ T_0^n)-\int Ad\mu_0\right|\leq C_2\theta^n$$

• Let $A, B \in \mathcal{H}$ with zero mean. Denote $A_n(x) = \sum_{j=0}^{n-1} A(T_0^j x)$. Then

$$\mathbb{E}_{\ell}(A_n B_n) = n\sigma_{A,B} + O(|\log^2 \operatorname{length}(\ell)|)$$

where

$$\sigma_{A,B} = \sum_{j=-\infty}^{\infty} \int A(x)B(T_0^j x)d\mu_0(x).$$

			00000000000		
A Markey Taylor averagion					

A Markov-Taylor expansion

$$\begin{split} \phi\left(\frac{q_{m_{p+1}}}{\sqrt{N}}\right) &- \phi\left(\frac{q_{m_p}}{\sqrt{N}}\right) = \sum_{j=m_p+1}^{m_{p+1}} \frac{1}{\sqrt{N}} \left\langle D\phi\left(\frac{q_{m_{p-1}}}{\sqrt{N}}\right), \Delta_j \right\rangle \\ &+ \frac{1}{N} \left[\frac{1}{2} \sum_{j=m_p+1}^{m_{p+1}} \left\langle D^2\phi\left(\frac{q_{m_{p-1}}}{\sqrt{N}}\right) \Delta_j, \Delta_j \right\rangle \right. \\ &+ \left. \sum_{m_{p-1} < k < j} \left\langle D^2\phi\left(\frac{q_{m_{p-1}}}{\sqrt{N}}\right) \Delta_k, \Delta_j \right\rangle \right] \\ &+ O(L^2 N^{-3/2}). \end{split}$$

・ロト・日本・モート ヨー うくぐ

Introduction	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method ○○○○○○○●○○	∞ H Lorentz 00
Decompo	ositions			

Consider the Markov decomposition

$$\mathbb{E}_{\ell}(A \circ T^{m_{p}}) = \sum_{\alpha} c_{\alpha} \mathbb{E}_{\ell_{\alpha}}(A \circ T^{(m_{p-1}+m_{p})/2}) = \mathcal{T}_{1} + \mathcal{T}_{2}$$
where $A = \phi\left(\frac{q_{L}}{\sqrt{N}}\right) - \phi\left(\frac{q_{0}}{\sqrt{N}}\right)$, and
 \mathcal{T}_{1} is the sum over α such that $|q_{m_{p-1}}| \ge KL$ and
 \mathcal{T}_{2} is the sum over α such that $|q_{m_{p-1}}| < KL$.

To estimate \mathcal{T}_1 split it $\mathcal{T}'_1 + \mathcal{T}''_1$ where \mathcal{T}'_1 (the main term!) contains α s with length $(\ell_{\alpha}) > N^{-100}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のので

 T_1'' can be handled by using the growth lemma.

Introd	oco	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method ○○○○○○○○●○	∞ H Lorentz 00
Α	priori	bound and ma	in term		
	Terr	he handled by using a		d	
	I_2 can	be handled by using a	an a priori dou	ind	
	Lemma	a			
	Fix S, a	a finite collection of s	catterers. The	ere is a constant $ ilde{K}$	
		$\mathbb{E}_{\ell}(\operatorname{Card}(j \leq n))$	$(i:q_i \in S)) \leq i$	$ ilde{\mathcal{K}} \log^{1+\xi} {\mathcal{N}}$	

where $\xi > 0$.

For the main term use the Markov-Taylor expansion:

$$\mathcal{T}_1' = \mathcal{T}_{lin} + \mathcal{T}_{quad} + \mathcal{T}_{rem}$$

Its terms can be handled by using the Markov decomposition and the moment asymptotics.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 Introduction
 Planar FH Lorentz Process
 ∞H Lorentz
 Martingale method
 ∞H Lorentz

 000
 00
 00
 00
 00
 00

Thm for locally perturbed FH, D-Sz-V, '09

Theorem

For finite modifications of the FHLP, as $N \to \infty$, $W_N(t) \Rightarrow W_{\Sigma^2}(t)$ (weak convergence in $C[0,\infty]$), where $W_{\Sigma^2}(t)$ is the Brownian Motion with the non-degenerate covariance matrix Σ^2 . The limiting covariance matrix coincides with that for the unmodified periodic Lorentz process.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction	Planar FH Lorentz Process	∞ H Lorentz 00	Martingale method	∞ H Lorentz \bullet 0
Geometry	y & Probability			

- Corridors
- Jump length for discrete version: $\mathbb{P}(\Delta_j = k) \sim const. \frac{1}{k^3}$
- By using truncation à la Ch-D: $\hat{\Delta}_k = Min\{\Delta_k, \sqrt{N}\log^{\beta} N\}$

$$\mathbb{E}|\hat{\Delta}_k|^h = O(N^{rac{h-2}{2}}\log^{eta(h-2)}N) \qquad \textit{if} \ h\geq 3$$

$$= O(\log N)$$
 for $h = 2$ and $= O(1)$ for $h \le 1$.

- Paulin-Sz., '09: for random walks
 - a with jumps belonging to the non-standard domain of attraction of Gaussian
 - and with local impurities

the same limit behavior holds as for the periodic RW

• Nándori, '09: if impurity is in 0, but it also acts when flying through, then 'local time' for 0 is $O(n^{1/6})$.

Martinga	lo mothod for p	oriodic Lo	rontz	
Introduction	Planar FH Lorentz Process	∞ H Lorentz	Martingale method	∞ H Lorentz

- growth lemma holds (in fact, also for perturbed Lorentz)
- moment estimates and EDC hold by Ch-D
- apply the Markov-Taylor expansion to $\hat{q}_j = \sum_{k=1}^j \hat{\Delta}_k$
- the error terms can be handled by using the bounds on $\mathbb{E}|\hat{\Delta}_k|^h$, and some Höldering;
- Result: third proof for global LT for ∞H periodic Lorentz.