A heat conduction model with localized billiard balls and weak interaction forces

Imre Péter Tóth

University of Helsinki, Budapest University of Technology

Hyperbolic Dynamical Systems in the Sciences

INdAM, Corinaldo, June 3, 2010

Preliminary remarks

- Motivation: Gaspard-Gilbert model
- work in progress more phenomena than complete proofs
- Carlangelo Liverani will (also) talk about something very similar tomorrow
- I apologize for my first beamer presentation

The model

- particles cannot collide
- neigbours interact via some potential
- (compare Gaspard-Gilbert)

Goal

Understand heat conduction

- big system + thermostats, or
- infinite system + nenequilibrium initial conditions

Temperature defined e.g. as

- expectation of energy, or
- $T = 1/\beta$ if energy $\sim e^{-\beta E}$

Dreams

Dreams: Fourier's law

$$\partial_t T(t,x) = -\nabla_x J(t,x)$$

$$J(t,x) = D(T(t,x))\nabla_x T(t,x)$$

- not obviously true: models with "not enough nonlinearity" exhibit anomalous heat conduction
- out of reach for this system at the moment

What I think can be done

When there is hope: **weak coupling**: $force = \varepsilon F$

Programme:

- Step 1: finite size $\varepsilon \searrow 0, t \leadsto t/\varepsilon^2$ $\{E_i(t)\}_{i \in \Lambda \subset \mathbb{Z}^2}$ Markov process (=interacting particle system)
 - Markov process (=interacting particle system) (hyperbolic dynamical systems problem)
- **Step 2**: hydrodynamics of the interacting particle system (problem for stochastics people)

Step 0: two particles

$$U(x_1, x_2) = \varepsilon V(|x_1 - x_2|) + \text{billiard reflections}$$

$$\begin{array}{lll} \dot{E}_{1}^{mic,\varepsilon} & = & v_{1}^{\varepsilon}\varepsilon F(x_{1}^{\varepsilon}-x_{2}^{\varepsilon})=\varepsilon P_{1}(\text{fast variables}) \\ \dot{E}_{2}^{mic,\varepsilon} & = & -v_{2}^{\varepsilon}\varepsilon F(x_{1}^{\varepsilon}-x_{2}^{\varepsilon})=\varepsilon P_{2}(\text{fast variables}) \\ \dot{x}_{1}^{\varepsilon} & = & v_{1}^{\varepsilon} \\ \dot{x}_{2}^{\varepsilon} & = & v_{2}^{\varepsilon} \\ \dot{v}_{1}^{\varepsilon} & = & 0+\varepsilon F(x_{1}^{\varepsilon}-x_{2}^{\varepsilon}) \\ \dot{v}_{2}^{\varepsilon} & = & 0-\varepsilon F(x_{1}^{\varepsilon}-x_{2}^{\varepsilon}) \end{array} \right\} + \text{billiard reflection boundary cond.} \\ (F=\text{force acting on particle 1; } P=\text{power of force})$$

Why t/ε^2 ?

$$\dot{E_1}^{mic,arepsilon} = v_1^arepsilon \mathcal{F}(x_1^arepsilon - x_2^arepsilon) = arepsilon P_1 ext{(fast variables)}$$

Attempt 1: scale $t \rightsquigarrow t/\varepsilon$. That is, set

$$E_1^{\varepsilon}(t) := E_1^{mic,\varepsilon}(t/\varepsilon).$$

Not hard to guess:

$$E_1^{\varepsilon}(t) \stackrel{\varepsilon \searrow 0}{\Longrightarrow} E_1(t)$$
 deterministic,

such that

$$\dot{E}_1(t)=b(E_1(t)),$$

where

$$b(E) = \int_{E_1 - E} P_1(fast) \,\mathrm{d}\mu_{inv}^{fast}.$$

Why not t/ε ?

$$\dot{E}_1(t)=b(E_1(t))$$

One could think that

but no. CRUCIAL FACT: In our model $b(E) \equiv 0$: **on this time scale nothing happens.**

(This is good news: we prefer a (limiting) model with a physically realistic invariant measure.) (compare Bricmont-Kupiainen)

Yes, t/ε^2 .

Attempt 2: scale $t \rightsquigarrow t/\varepsilon^2$. That is, set

$$E_1^{\varepsilon}(t) := E_1^{mic,\varepsilon}(t/\varepsilon^2).$$

Now much better:

$$E_1^{\varepsilon}(t) \stackrel{\varepsilon \searrow 0}{\Longrightarrow} E_t$$
 nondeterministic Markov,

indeed

$$\mathbb{E}((E_{t+\,\mathrm{d}t}-E_t)^2\mid E_{\leq t})\approx \left[\int_{-\infty}^{\infty}\int_{E_1=E_t}P_1(\Phi^\tau\mathit{fast})P_1(\mathit{fast})\,\mathrm{d}\mu_\mathit{inv}^\mathit{fast}\,\mathrm{d}\tau\right]\,\mathrm{d}t$$

=: $\sigma^2(E_t) dt \ge 0$, where Φ^{τ} is the *uncoupled* flow of the two particles. (remember CLT and Green-Kubo)

The limiting process

Moments:

- $\mathbb{E}((E_{t+dt} E_t)^2 \mid E_{\leq t}) \approx \sigma^2(E_t) dt = \text{Green-Kubo}$
- $\mathbb{E}(E_{t+dt} E_t \mid E_{\leq t}) \approx b(E_t) dt = \text{ much uglier formula.}$

In the language of stochastic processes:

$$Lf = \frac{1}{2}\sigma^2 \nabla^2 f + b \nabla f$$
$$dE_t = b(E_t) dt + \sigma(E_t) dW_t$$

About the method

Keywords of proof (motivated by Chernov-Dolgopyat)

- standard pair: measure concentrated on a (short) unstable manifold ≈ conditioning on the entire past
- coupling: to show that any standard pair evolves (under the dynamics) quickly into something close to the invariant measure
- separation of time scales:
 - the fast system equilibrates while the energies are nearly constant
 - technically: evolution of unstable manifolds (standard pairs) under the true dynamics can be well approximated by the evolution under the "free" dynamics (compare G-G)
- martingale method: Show convergence of expectations, as $\varepsilon \searrow 0$, of expressions composed of test functions and the process $E_1^{\varepsilon}(t)$, and get convergence to the Markov process.

The problem of low energies

Q: What if a particle (nearly) stops?

A: This does not happen.

(+ we know $b = (\frac{1}{2}\sigma^2)'$, and think of the square Bessel process)

Step 1: finitely many particles

$$\mathrm{d}E_t^i = \sum_j \left(b(E_t^i, E_t^j) \, \mathrm{d}t + \sigma(E_t^i, E_t^j) \, \mathrm{d}W_t^{ij} \right)$$

- the sum runs over all neighbours j of i
- the W_t^{ij} are Wiener processes, independent for different edges, but $W_t^{ij} = -W_t^{ji}$.

In words:

- On every edge of the lattice there sit independent Wiener processes governing the energy transfer through the edge,
- the drift b and the diffusion coefficient σ of the transfer through the edge depends only on the energies at the sites connected.

Step 1: finitely many particles

$$dE_t^i = \sum_j \left(b(E_t^i, E_t^j) dt + \sigma(E_t^i, E_t^j) dW_t^{ij} \right)$$

Symmetries:

- b(x,y) = -b(y,x) and $\sigma(x,y) = \sigma(y,x)$: conservation of energy
- b can be expressed in terms of σ , which corresponds to the universality of the invariant measure, inherited from the invariant (Liouville) measure of the Hamiltonian system.
- σ is homogeneous in the total energy involved: $\sigma(Ex, Ey) = E^{1/4}\sigma(x, y)$. This is extremely useful in the study of the hydrodynamic limit.

Step 3: heat conduction

Step 3: Heat conduction in the interacting particle system

- Proving anything is probably difficult:
 - I know next to nothing about the topic (as of 02.06.2010)
 - the system is not gradient (⇒ no entropy method(?))
 - The system is not a small perturbation of something well understood (⇒ no renormalization method(?))
- Still it's possibly easier than Gaspard-Gilbert: energy fluxes are much smaller
- Heuristically the situation is clear: if we believe non-anomallous heat conduction, then from the scaling properties

$$D(T) = const \ T^{-3/2}$$

Conclusion

This is a great model:

$$D(T) = const T^{-3/2}$$

Compare

- Gaspard-Gilbert: $D(T) = const T^{+1/2}$
- experimental data (silicon, high temperature): $D(T) = const \ T^{-1.3}$

There is a lot to be done.

thanks

Thank you for your attention.