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Preliminary remarks
°

Preliminary remarks

@ Motivation: Gaspard-Gilbert model
@ work in progress — more phenomena than complete proofs

@ Carlangelo Liverani will (also) talk about something very
similar tomorrow

@ | apologize for my first beamer presentation
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@ particles cannot collide

@ neigbours interact via some potential

@ (compare Gaspard-Gilbert)



The model

L Je]

Understand heat conduction

\

heat current

@ big system + thermostats, or

@ infinite system + nenequilibrium initial conditions
Temperature defined e.g. as

@ expectation of energy, or

o T =1/3if energy ~ e PE
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Dreams

Dreams: Fourier's law
O0¢ T(t,x) = =V J(t, x)
J(t,x) = D(T(t,x))VxT(t,x)

@ not obviously true: models with “not enough nonlinearity”
exhibit anomalous heat conduction

@ out of reach for this system at the moment
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What | think can be done

When there is hope: weak coupling: force = ¢F
Programme:

finite size e\0, t~t/e?
— /

® Step L dynamical system

{Ei(t)}ieAcZ2

Markov process (=interacting particle system)
(hyperbolic dynamical systems problem)

@ Step 2: hydrodynamics of the interacting particle system
(problem for stochastics people)
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Step 0: two particles

U(x1,x2) = eV(|x1 — x2|) + billiard reflections

= vieF(x{ — x5) = Py (fast variables)

= —vieF(x{ — x5) = ePx(fast variables)

= Vf

= V26

= 0+eF(xf—x5) - .

_ 0 — eF(xf — x5) + billiard reflection boundary cond.

(F=force acting on particle 1; P=power of force)



two particles
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Elmic’€ = vieF(x{ — x3) = P4 (fast variables)

Attempt 1: scale t ~ t/e. That is, set
Ef(t) := E["(t/e).
Not hard to guess:
E5(t) =2 E(t) deterministic,

such that _
Ei(t) = b(E1(t)),
where

b(E) = / Py (fast) dpfst.
Ei=E
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Why not t/c?

E1(t) = b(Ea(t))

One could think that
B(E) E(t)

1 t

|
B
|
|

but no. CRUCIAL FACT: In our model b(E) = 0:

on this time scale nothing happens.

(This is good news: we prefer a (limiting) model with a physically
realistic invariant measure.) (compare Bricmont-Kupiainen)
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Yes, t/c°.

Attempt 2: scale t ~~ t/52. That is, set
Ef (1) = E/"%(t/°).
Now much better:
N

0 A
E{(t) => E; nondeterministic Markov,

indeed
o

E((Eryat—E:)? | E<i) = [/ /E . Py (®7 fast) Py (fast) dpf2st dr | dt
-0 1=E¢

=: 02(E;)dt = 0, where ®7 is the uncoupled flow of the two
particles. (remember CLT and Green-Kubo)
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The limiting process

Moments:
o E((Etyar — Et)? | E<t) = 0?(E;)dt = Green-Kubo
@ E(Eryar — Ei | E<¢) = b(E¢)dt = much uglier formula.
In the language of stochastic processes:
1
Lf = 5a2v2f + bVF
dEt = b(Et) dt + O'(Et) th
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About the method

Keywords of proof (motivated by Chernov-Dolgopyat)

@ standard pair: measure concentrated on a (short) unstable
manifold = conditioning on the entire past

@ coupling: to show that any standard pair evolves (under the
dynamics) quickly into something close to the invariant
measure

@ separation of time scales:

o the fast system equilibrates while the energies are nearly
constant

e technically: evolution of unstable manifolds (standard pairs)
under the true dynamics can be well approximated by the
evolution under the “free” dynamics (compare G-G)

@ martingale method: Show convergence of expectations, as
e\, 0, of expressions composed of test functions and the
process Ef(t), and get convergence to the Markov process.
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The problem of low energies

Q: What if a particle (nearly) stops?
A: This does not happen.

0,04

sigma”~2(E_1)
g

S

0

T y T T
0,2 04 0,6 08

(+ we know b = (302)', and think of the square Bessel process)
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Step 1: finitely many particles

dEj =Y (b(E;’, El)dt + o(E!, El) th"j)
j

@ the sum runs over all neighbours j of j

@ the Wt” are Wiener processes, independent for different edges,
but WY = —W/.

In words:

@ On every edge of the lattice there sit independent Wiener
processes governing the energy transfer through the edge,

@ the drift b and the diffusion coefficient o of the transfer
through the edge depends only on the energies at the sites
connected.
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Step 1: finitely many particles

A =Y (b(E;’, El)dt + o(El, El) th"f)
J
Symmetries:
@ b(x,y) = —b(y,x) and o(x,y) = o(y, x): conservation of
energy
@ b can be expressed in terms of o, which corresponds to the

universality of the invariant measure, inherited from the

invariant (Liouville) measure of the Hamiltonian system.
@ o is homogeneous in the total energy involved:

o(Ex, Ey) = EY*5(x,y). This is extremely useful in the

study of the hydrodynamic limit.
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Step 3: heat conduction

Step 3: Heat conduction in the interacting particle system

@ Proving anything is probably difficult:
e | know next to nothing about the topic (as of 02.06.2010)
e the system is not gradient (= no entropy method(?))
e The system is not a small perturbation of something well

understood (= no renormalization method(?))
@ Still it's possibly easier than Gaspard-Gilbert: energy fluxes
are much smaller

@ Heuristically the situation is clear: if we believe
non-anomallous heat conduction, then from the scaling
properties

D(T) = const T~3/?
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Conclusion

This is a great model:

D(T) = const T~3/2

Compare
@ Gaspard-Gilbert: D(T) = const T*1/2
@ experimental data (silicon, high temperature):
D(T) = const T~13

There is a lot to be done.
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thanks

Thank you for your attention.
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