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Contact Anosov Flow

Let (M2d+1, α) be a closed manifold with a contact 1 form α.

A C∞ flow F t : (M, α)→ (M, α) is called a contact Anosov flow if it

is an Anosov flow and preserves α.

A prominent example is the geodesic flow on a closed C∞ Riemann

manifold with negative curvature, in which α is the canonical 1 form.
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Transfer operators

We consider the one-parameter family of transfer operators

Lt : C∞(M)→ C∞(M), Lu(x) = gt(x)u(F t(x))

where gt : M → C is C∞ multiplicative cocycle.

Question 1
Spectral properties of the transfer operator Lt (when it acts on an

appropriate function space).

We will assume gt ≡ 1 for simplicity, in most places.
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What can we expect for the spectrum of Lt ?

For geodesic flows on closed surfaces with constant negative

curvature −1, we expect

spec(Lt) =

{
|z| = exp

(
−

nt
2

)}
n=1,2,...

∪ {exp(−∃ant) ∈ R→ 0}

from

Selberg’s result on his zeta function and,

the conjectural relation between zeros of dynamical determinant

and specturm of generators of Lt .
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Question 2
To what extent is this picture true for the case of variable curvature or,

more generally, for contact Anosov flows?
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The action Lt viewed through Fourier transform

The spectrum of Lt comes from its action on functions that have very

high frequency in the flow direction or, more precisely, the directions

close to the contact form α.
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Encounter with semi-classical analysis

Our task is to analyze the situation where

functions with high frequency in the flow direction are moving

along the flow and

interfere by smoothing along the stable direction.

This (in the case of geodesic flows) reminiscents us of the main theme

of the semi-classical analysis.

Quesion 3
Is (techniques in) semi-classical analysis useful in the analysis of

contact Anosov flows?
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Main result

Theorem
There exists a Hilbert space (Anisotropic Sobolev space) H ⊂ D ′(M)

such that ρess(Lt) = Λt where

Λ = lim
t→∞

(
sup
x∈M

1√
det DF t |Eu

)1/t

Note that Λ = e−1/2 in the case of geodesic flows on sufaces with

constant curvature −1 (and coincides with the expectation).

In what follows, we describe a proof of this theorem using (partial) FBI

transform, a tool from semiclassical analysis.
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Conjecture

Consider the transfer operator with the coefficient gt and set

Λ = lim
t→∞

(
sup
x∈M

|gt |√
det DF t |Eu

)1/t

, Λ = lim
t→∞

(
inf

x∈M

|gt |√
det DF t |Eu

)1/t

λ = minimum expansion rate of F t |Eu > 1

Conjecture (Subject of work in progress with F. Faure)

Ess-spec(Lt |H) ⊂ {Λt ≤ |z| ≤ Λ
t} ∪ {|z| ≤ λ−t · Λt}

Remark
A particularly interesting case will be gt =

√
det DF t |Eu , where

Λ = Λ = 1.
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Sketch of the proof: A local model of Lt

Consider the Euclidean space R3 = R⊕ R2 equipped with the

standard contact form

α0(t, x+, x−) = dt + (x+dx− − x−dx+)/2

And let A : R3 → R3 be the linear map (preserving α0)

A(t, x+, x−) = (t, λx+, λ
−1x−) λ > 1

Below we consider the operator Lu = u ◦ A as a localized and

simplified model of the transfer operator for contact Anosov flow.
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FBI (Fourier-Bros-Iagolnitzer) transform

Let us consider a Gaussian wave packet

φx,ξ(y) := αn,k exp(i(y − x/2)ξ − |y − x|2/2) (x, y , ξ ∈ R2)

where αn,k = 2−1π−3/2.

We define T : L2(R2)→ L2(R4) by

T (x, ξ) =

∫
φx,ξ(y)u(y)dy

Then we have T ∗T = Id and hence

u(y) =

∫
T u(x, ξ) · φx,ξ(y)dxdξ (wavepacket decomposition)
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Partial FBI transform

Partial FBI transform T : L2(R⊕ R2)→ L2(R2 ⊕ R2 ⊕ R) is

Tu(x, ξ, ν) =

∫
eiνtφ

(ν)
x,ξ(y)u(t, y)dtdy

=

∫
φ

(ν)
x,ξ(y)

(∫
e−iνtu(t, y)dt

)
dy

where

φ
(ν)
x,ξ(y) := αn,k · ν · exp(i(y − x/2)ξ − ν|y − x|2/2)

"Fourier transform in R" + "(scaled) FBI tranform in R2"
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Anisotropic Sobolev space

Anisotropic Sobolev space H is defined as the completion of C∞0 (R3)

with respect to the norm

‖u‖H = ‖W (x, ξ, ν) · Tu(x, ξ, ν)‖L2(R2⊕R2⊕R)

where the weight function W is defined so that, for γ � 1,

W (x, ν·α0(0, x)+(ξ, 0)) ∼


〈ν−1/2ξ〉γ, if ξ is in the stable cone;

〈ν−1/2ξ〉−γ, if ξ is in the unstable cone;
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Construction of the weight function W

More precisely, we set w(ξ) = 〈ξ〉µ(ξ/|ξ|) where

µ(ξ) =


γ, if ξ ∈ R2 is in the stable cone;

−γ, if ξ ∈ R2 is in the unstable cone.

and put W (x, ξ, ν) = w(ν−1/2((ξ, ν)− να0(x))).
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The main theorem for linear maps

Theorem
‖L : H → H‖ ≤ Cλ−1/2 (C: a constant independent of λ� 1.)

Remark
Nonlinearity induces only small perturbations (and does not affect

the essential spectral radius).

If we apply such estimate for Lt on local charts and let t →∞,

we get the main theorem.
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The lift of L with respect to T

To prove the theorem, we consider the lift of L:

L̂ = T ◦ L ◦ T∗ : L2(R2 ⊕ R2 ⊕ R)→ L2(R2 ⊕ R2 ⊕ R)

such that the following diagram commutes

L2(R2 ⊕ R2 ⊕ R)
L̂−−−→ L2(R2 ⊕ R2 ⊕ R)

T
x T

x
L2(R⊕ R2)

L−−−→ L2(R⊕ R2)

It is then enough to show∥∥∥L̂ : L2(R2 ⊕ R2 ⊕ R,W )→ L2(R2 ⊕ R2 ⊕ R,W )
∥∥∥ ≤ Cλ−1/2

M. Tsujii ( Kyushu University ) Contact Flow June, 2010 at Corinaldo 17 / 22



The lift of L with respect to T

To prove the theorem, we consider the lift of L:

L̂ = T ◦ L ◦ T∗ : L2(R2 ⊕ R2 ⊕ R)→ L2(R2 ⊕ R2 ⊕ R)

such that the following diagram commutes

L2(R2 ⊕ R2 ⊕ R)
L̂−−−→ L2(R2 ⊕ R2 ⊕ R)

T
x T

x
L2(R⊕ R2)

L−−−→ L2(R⊕ R2)

It is then enough to show∥∥∥L̂ : L2(R2 ⊕ R2 ⊕ R,W )→ L2(R2 ⊕ R2 ⊕ R,W )
∥∥∥ ≤ Cλ−1/2

M. Tsujii ( Kyushu University ) Contact Flow June, 2010 at Corinaldo 17 / 22



The lift of L with respect to T

To prove the theorem, we consider the lift of L:

L̂ = T ◦ L ◦ T∗ : L2(R2 ⊕ R2 ⊕ R)→ L2(R2 ⊕ R2 ⊕ R)

such that the following diagram commutes

L2(R2 ⊕ R2 ⊕ R)
L̂−−−→ L2(R2 ⊕ R2 ⊕ R)

T
x T

x
L2(R⊕ R2)

L−−−→ L2(R⊕ R2)

It is then enough to show∥∥∥L̂ : L2(R2 ⊕ R2 ⊕ R,W )→ L2(R2 ⊕ R2 ⊕ R,W )
∥∥∥ ≤ Cλ−1/2

M. Tsujii ( Kyushu University ) Contact Flow June, 2010 at Corinaldo 17 / 22



We may write L̂ as

L̂ = det((Id + A∗A)/2)1/2 · P ◦ L̃ ◦ P

where L̃ is pull-back by (A|{0}×R2)⊕ tA−1 and

P = T ◦ T∗.

P is the orthogonal projection to the image T(L2(R2)) and with kernel

K ((x, ξ, ν), (x ′, ξ′, ν′)) = δ(ν − ν′) · eiΩ(x,ξ;x′,ξ′)/2−|(x,ξ)−(x′,ξ′)|2/4

where Ω = dx ∧ dξ.
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We introduce a (magical) change of variable (due to F. Faure)

Φ : R2 ⊕ R2 ⊕ R→ R2 ⊕ R2 ⊕ R,
x

ξ

ν

 7→


w+ = ν1/2 · x + ν−1/2 · J−1(ξ)

w− = ν1/2 · x − ν−1/2 · J−1(ξ)

ν


where J : R2 → R2 is define by J(x, y) = ω0(x, y) := dα0(x, y).

the weight function W depends only on the variable w−,

Ω corresponds to the 2-form ω0 ⊕ (−ω0) (up to an absolute

const.)

Φ preserves the Euclidean norm (up to an absolute const.)
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L2(R2 ⊕ R2 ⊕ R,W )
L̂−−−→ L2(R2 ⊕ R2 ⊕ R,W )

Φ∗
x Φ∗

x
L2(R2 ⊕ R2 ⊕ R, W̃ ) −−−→ L2(R2 ⊕ R2 ⊕ R, W̃ )∥∥∥ ∥∥∥

L2(R2)⊗ L2(R2, W̃ )⊗ L2(R)
L0⊗L0⊗Id−−−−−−→ L2(R2)⊗ L2(R2, W̃ )⊗ L2(R)

where

L0 = (det(Id + A∗A)/2)1/4 · P ◦ L′ ◦ P

with L′ is pull-back by A restricted on R2 and P the projection

Pu(x) = c
∫

exp(i · ω0(x, y)/2− |x − y |2/4)u(y)dy
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The last part of the proof

Finally we show

(1) ‖L0 : L2(R2)→ L2(R2)‖ ≤ 1.

(2) ‖L0 : L2(R2, W̃ )→ L2(R2, W̃ )‖ ≤ det(Id + A∗A)−1/4 ∼ λ−1/2

(1) can be proved by a rather general argument. To see (2), we have

only to apply the crude estimate on the kernel of P:

| exp(iω0(x, y)/2− |x − y |2/4)| = exp(−|x − y |2/4)

and the definition of the weight function W .
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