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Contact Anosov Flow

Let (M?9+1, ) be a closed manifold with a contact 1 form a.
A C= flow F': (M,a) — (M, ) is called a contact Anosov flow if it

is an Anosov flow and preserves a.
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Transfer operators

We consider the one-parameter family of transfer operators
L':C®(M) — C=(M),  Lu(x) = g'(x)u(F'(x))

where gt : M — C is C*> multiplicative cocycle.
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Transfer operators

We consider the one-parameter family of transfer operators
L':C®(M) — C=(M),  Lu(x) = g'(x)u(F'(x))

where gt : M — C is C*> multiplicative cocycle.

Spectral properties of the transfer operator £! (when it acts on an

appropriate function space).

We will assume g! = 1 for simplicity, in most places.
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What can we expect for the spectrum of £! ?
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What can we expect for the spectrum of £! ?

For geodesic flows on closed surfaces with constant negative
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spec(L') = {|z| = exp (—2> }n=1,2,... U {exp(—3ant) € R — 0}

from
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What can we expect for the spectrum of £! ?

For geodesic flows on closed surfaces with constant negative

curvature —1, we expect

nt

spec(L') = {|z| = exp (—2> }n=1,2,... U {exp(—3ant) € R — 0}

from
@ Selberg’s result on his zeta function and,

@ the conjectural relation between zeros of dynamical determinant

and specturm of generators of L.
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To what extent is this picture true for the case of variable curvature or,

more generally, for contact Anosov flows?
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To what extent is this picture true for the case of variable curvature or,

more generally, for contact Anosov flows?
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The action £! viewed through Fourier transform

The spectrum of £! comes from its action on functions that have very

high frequency in the flow direction or, more precisely, the directions
close to the contact form a.
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The action £! viewed through Fourier transform

The spectrum of £! comes from its action on functions that have very

high frequency in the flow direction or, more precisely, the directions
close to the contact form a.
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Encounter with semi-classical analysis

Our task is to analyze the situation where
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Encounter with semi-classical analysis

Our task is to analyze the situation where

@ functions with high frequency in the flow direction are moving

along the flow and
@ interfere by smoothing along the stable direction.

This (in the case of geodesic flows) reminiscents us of the main theme

of the semi-classical analysis.
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Encounter with semi-classical analysis

Our task is to analyze the situation where

@ functions with high frequency in the flow direction are moving

along the flow and
@ interfere by smoothing along the stable direction.

This (in the case of geodesic flows) reminiscents us of the main theme

of the semi-classical analysis.

Is (techniques in) semi-classical analysis useful in the analysis of

contact Anosov flows?
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Main result
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Main result

There exists a Hilbert space (Anisotropic Sobolev space) H C 2'(M)
such that pess(L?) = N where

1/t
1
A= lim (sup—MMM
t—oo (xene v/ det DFf|Eu>
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Note that A = e~1/2 in the case of geodesic flows on sufaces with

constant curvature —1 (and coincides with the expectation).
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Main result

Theorem
There exists a Hilbert space (Anisotropic Sobolev space) H C 2'(M)

such that pess(L?) = N where

1/t
1
A= lim (sup—MMM
t—oo (XEE v/ det DFf|Eu>

Note that A = e~1/2 in the case of geodesic flows on sufaces with

constant curvature —1 (and coincides with the expectation).

In what follows, we describe a proof of this theorem using (partial) FBI

transform, a tool from semiclassical analysis.

M. Tsujii ( Kyushu University ) Contact Flow June, 2010 at Corinaldo 9/22



Conjecture
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Consider the transfer operator with the coefficient g* and set

g\ g\
A=lim (sup—=_ | , A=lim [inf —21
t—oo <x€IIF/)I det DFt|Eu> T tooo <xeM det DFtlEu)

A = minimum expansion rate of F|gu > 1
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Consider the transfer operator with the coefficient g* and set

g\ g\
A=lim (sup—=_ | , A=lim [inf —21
t—oo <x€IIF/)I det DF’|Eu> T tooo <xeM det DFtlEu)

A = minimum expansion rate of F|gu > 1

Conjecture (Subject of work in progress with F. Faure)

Ess-spec(L!|w) C {Af < |z <A} U {|z| < AT.A}
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Consider the transfer operator with the coefficient g* and set

g\ g\
A=lim [sup——=_ ) , A=lim [inf —=_
t—oo (xEIIF/)I det DF’|Eu> T tooo <xeM det DFtlEu)

A = minimum expansion rate of F|gu > 1

Conjecture (Subject of work in progress with F. Faure)

Ess-spec(L!|w) C {Af < |z <A} U {|z| < AT.A}
A particularly interesting case will be g' = \/det DFt|gu, where
A=A=1.

M. Tsujii ( Kyushu University ) Contact Flow June, 2010 at Corinaldo 10/22



Sketch of the proof: A local model of £!

Consider the Euclidean space R® = R @ R? equipped with the

standard contact form

ao(t, Xy, x_) = dt + (x;dx_ — x_dx;)/2

M. Tsujii ( Kyushu University ) Contact Flow June, 2010 at Corinaldo 11/22



Sketch of the proof: A local model of £!

Consider the Euclidean space R® = R @ R? equipped with the

standard contact form
ao(t, Xy, x_) = dt + (x;dx_ — x_dx;)/2
And let A : R® — R3 be the linear map (preserving ay)

At xy, x_) = (B, Ax, A7 'x2) A>1
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Sketch of the proof: A local model of £!

Consider the Euclidean space R® = R @ R? equipped with the

standard contact form
ao(t, Xy, x_) = dt + (x;dx_ — x_dx;)/2
And let A : R® — R3 be the linear map (preserving ay)
At xy, x_) = (B, Ax, A7 'x2) A>1

Below we consider the operator Lu = u o A as a localized and

simplified model of the transfer operator for contact Anosov flow.
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FBI (Fourier-Bros-lagolnitzer) transform

Let us consider a Gaussian wave packet

bxe(y) = ankexp(i(y — x/2)¢ — |y — x[?/2)  (x,y,€& € R?)

where ap g = 2717 73/2,
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FBI (Fourier-Bros-lagolnitzer) transform

Let us consider a Gaussian wave packet
Pxe(Y) == anxexp(i(y — x/2)¢ — |y — x1?/2)  (x,y,& € R?)
where ap g = 27 '7~3/2. We define 7 : L2(R2) — L2(R*) by

T(x,€) = / FreY)u(y)dy
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FBI (Fourier-Bros-lagolnitzer) transform

Let us consider a Gaussian wave packet
Dxe(¥) i= ankexp(i(y — x/2)¢ — |y — x|?/2)  (x,y,€ € R?)
where ap g = 27 '7~3/2. We define 7 : L2(R2) — L2(R*) by
T(x,6) = [ Pxeu(y)ay
Then we have 7*7 = Id and hence

u(y) = / Tu(x,§) - dxe(y)dxdg (wavepacket decomposition)
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Partial FBI transform

Partial FBI transform T : L2(R @ R2) — L?(R%2 @ R2 @ R) is

Tu(x, ¢, v) = / et (y)u(t, y)dtdy

= [0 ([ e utt.yyat) o
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Partial FBI transform

Partial FBI transform T : L2(R @ R2) — L?(R%2 @ R2 @ R) is

Tu(x, ¢, v) = / et (y)u(t, y)dtdy

= [0 ([ e utt.yyat) o

where

$rea(y) = ank - v - expli(y — x/2)¢ — vly — xI*/2)

"Fourier transform in R" + "(scaled) FBI tranform in R2"
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Anisotropic Sobolev space

Anisotropic Sobolev space H is defined as the completion of Cg°(]R3)

with respect to the norm

lullw = [[W(x,€&,v) - Tu(x, &, V)”LZ(RZEBRZEB]R)

where the weight function W is defined so that, for v > 1,

(v=1/2¢)7,  if ¢ is in the stable cone;
W(X7 V'QO(Oa X)-I—(f, 0)) ~

(v=1/2¢)=7, if ¢ is in the unstable cone:
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Construction of the weight function W

More precisely, we set w(&) = (¢£)*(&/1¢)) where

~, if ¢ € R2 is in the stable cone;
p(€) =

—~, if & € R?isin the unstable cone.
and put W(x, &, v) = w(v="/2((¢,v) — vao(x))).

Kwy
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The main theorem for linear maps
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The main theorem for linear maps

IL: H— H|| < CA~1/2 (C: a constant independent of A > 1.)
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The main theorem for linear maps

Theorem
IL: H— H|| < CA~1/2 (C: a constant independent of A > 1.)

Remark
@ Nonlinearity induces only small perturbations (and does not affect

| A\

the essential spectral radius).

.
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The main theorem for linear maps

Theorem
IL: H— H|| < CA~1/2 (C: a constant independent of A > 1.)

Remark
@ Nonlinearity induces only small perturbations (and does not affect

| A\

the essential spectral radius).

@ If we apply such estimate for £! on local charts and let t — oo,

we get the main theorem.

.
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The lift of L with respectto T

To prove the theorem, we consider the lift of L:

L=ToLoT*: L3(R?®R?@®R) - L*(R? @ R?2 @ R)
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The lift of L with respectto T

To prove the theorem, we consider the lift of L:
L=ToLoT*: L3(R?®R?@®R) - L*(R? @ R?2 @ R)
such that the following diagram commutes

L2(R? ® R? ® R) L, L2(R?2 ® R? ® R)

il il

[2ROR?) —ts [2(R@R?)
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The lift of L with respectto T

To prove the theorem, we consider the lift of L:
L=ToLoT*: L3(R?®R?@®R) - L*(R? @ R?2 @ R)
such that the following diagram commutes

L2(R? ® R? ® R) L, L2(R?2 ® R? ® R)

«] o]
[2ROR?) —ts [2(R@R?)
It is then enough to show

Hi L2R2ORZBR, W) - L2(R2DR2P R, W)H < CA-12
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We may write Las
L = det((1d + A*A)/2)"/2.Po Lo P
where L is pull-back by (A gy xz2) ® A~ and

P=ToT*
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We may write Las
L = det((1d + A*A)/2)"/2.Po Lo P
where L is pull-back by (A gy xz2) ® A~ and
P=ToT*
PP is the orthogonal projection to the image T(L?(R?)) and with kernel
K((x,& v), (X', &', 1)) = 6(v — V') - e/20&x"€)/2-1(x8)—(x'.£")[*/4

where Q = dx A d€.
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We introduce a (magical) change of variable (due to F. Faure)

®:RPOR’OR > RZPHR?DR,
x wy =v2. x40 12.g71(¢)
€ — W_=V1/2~X—I/_1/2'J_1(£)

174 174

where J : R? — R2 is define by J(x, ¥) = wo(X, ¥) := dag(X, y).
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El= |wo =012 x— v 12.g71(¢)
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where J : R? — R2 is define by J(x, ¥) = wo(X, ¥) := dag(X, y).

@ the weight function W depends only on the variable w_,
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®:RPOR’OR > RZPHR?DR,
x wy =v2. x40 12.g71(¢)
El= |wo =012 x— v 12.g71(¢)
174 1 %4
where J : R? — R2 is define by J(x, ¥) = wo(X, ¥) := dag(X, y).
@ the weight function W depends only on the variable w_,

@ Q corresponds to the 2-form wg @ (—wy) (up to an absolute

const.)
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We introduce a (magical) change of variable (due to F. Faure)

®:RPOR’OR > RZPHR?DR,
x wy =v2. x40 12.g71(¢)
El= |wo =012 x— v 12.g71(¢)
174 1 %4
where J : R? — R2 is define by J(x, ¥) = wo(X, ¥) := dag(X, y).
@ the weight function W depends only on the variable w_,

@ Q corresponds to the 2-form wg @ (—wy) (up to an absolute

const.)

@ & preserves the Euclidean norm (up to an absolute const.)
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L2(R2 e R2 R, W) — L2(R2pR2 R, W)
o | o |
L2(R2  R2 ® R, W) — L2(R2 ® R2 ® R, W)

12(R2) ® L2(R2, W) ® L2(R) 28589, )22y o 12(R2, W) @ L2(R)
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L2(R2 e R2 R, W) — L2(R2pR2 R, W)
o | o |
L2(R2  R2 ® R, W) — L2(R2 ® R2 ® R, W)

12(R2) ® L2(R2, W) ® L2(R) 28589, )22y o 12(R2, W) @ L2(R)
where

Lo = (det(ld + A*A)/2)'/4.PoL’o P

with L’ is pull-back by A restricted on R? and P the projection

Pu(x) = ¢ / exp(i - wo(X, ¥)/2 — |x — y[2/8)u(y)dy
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The last part of the proof

Finally we show

(1) lILo : L3(R?) — L2(R?)]| < 1.

() |ILo : L2(R2, W) — L2(R2, W)|| < det(ld + A*A)~1/4 ~ A—1/2
(1) can be proved by a rather general argument. To see (2), we have

only to apply the crude estimate on the kernel of P:
| exp(iwo(x,y)/2 — |x — y|?/8)| = exp(—|x — y|?/4)

and the definition of the weight function W.
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