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Closed System

Γ - domain with piecewise C3 boundary.
D1, · · · , DN pinned down disks:

- angular positions ϕ1, · · · , ϕN

- angular velocities ω1, · · · , ωN

Particle Collisions
- with wall:

v ′
⊥

= −v⊥; v ′
t = vt ;

- with disks:
v ′
⊥

= −v⊥; v ′
t = Rω; Rω′ = vt .1

- particles do not interact with each
other.

1 particle-disk interactions introduced in
[Klages, Nicolis, and Rateitschak 2000] and

[Larralde, Leyvraz, and Mejía-Monasterio 2003]
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Open System

γ1, · · · , γl - openings.
The system is coupled to a heat
bath at each.

- injection times exponentially
distributed with rates ̺1, · · · , ̺l ;

- distributions for positions qi ∈ γi

and velocities
vi ∈ H = {(vx , vy : vx > 0)} are
finite and positive everywhere.

Various geometric configurations considered in
[Larralde, Leyvraz, and Mejía-Monasterio 2003], [Eckmann and Young 2006]

[Eckmann and Jacquet 2007], and [Lin and Young 2010]
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The Phase Space

All particles are identical and indistinguishable.

The Phase Space

Ω = ⊔kΩk

- Ωk = (Γk × ∂D1 × · · · × ∂DN × R
2k+N)/ ∼

- invariant measure for the closed system with k particles:

mk = (λ2|Γ)
k × ρ|∂D1 × · · · × ρ|∂DN × λ2k+N)/ ∼ .
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Invariant Measures

Markov Process Φτ

- no particles enter or exit: deterministic flow on Ωk

- a particle exits: jumps from Ωk to Ωk−1

- a particle enters: jumps from Ωk to Ωk+1

Invariant measures:
- existence, uniqueness, ergodicity, absolute continuity with

respect to m,
- where m is a measure on Ω that has conditional densities

mk on Ωk .
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Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Results: Chain of Disks in a Rectangle

Geometry introduced in [Lin and Young 2010]
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Results
Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Special Case Results

"trapped particles" (including stopped particles)

Theorem

If ∃µ - invariant measure with
µ(states with "trapped particles") = 0

⇒
1. µ ≪ m and
2. µ is ergodic.
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Implications

Corollary 1

Any ergodic invariant measure ν can be written

ν = πk × µ,

- πk is a singular measure supported on k "trapped
trajectories"

- µ is the absolutely continuous ergodic measure from the
Theorem

Corollary 2

If there exists any invariant measure, then there exists
the unique absolutely continuous measure µ.
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Preliminaries

Some ideas in the proof borrowed from [Balint, Lin, and Young 2010] and
[Eckmann and Jacquet 2007]

Admissible State = NO "trapped particles" +
assuming no particles are injected,
the first collisions of particles with disks (if any) are

- NOT simultaneous with same disk and
- NOT tangential.

Let S be the set of all non-admissible states.

Lemma

µ-inv. + µ(states with “trapped particles) = 0 ⇒ µ(S) = 0.

Corollary

ν ≪ µ ⇒ (Φτ )∗ν is well defined ∀τ > 0
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Sample Paths and Canonical Neighborhoods

Fix a sequence of particle injections ǫ = (ǫ1, · · · , ǫn) at
times 0 < t1 < t2 < · · · < tn < T ,

- ǫj = (tj , ξj , vj) ∈ [0, T ] × ∪γi × H.

σ - a sample path on [0, T ] given ǫ and X ∈ Ω
= the path in the phase space Ω s.t.

- σ starts from the state X ∈ Ω
- particles are injected according to ǫ.

Σ - a canonical neighborhood of σ if
- ∃ open neighborhoods U of X and Tj × Qj × Vj of (tj , ξj , vj)

with nonintersecting Tj ⊂ [0, T ] s.t.
- each sample path in Σ starts with an initial condition in U

and exactly one particle is injected at some time in each Tj ,
with position in Qj , and velocity in Vj .
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Intermediate Propositions

Proposition 1 ("ac measures stay ac")

ν ≪ m =⇒ (Φt )∗ν ≪ m for any t > 0.

Proposition 2 ("acquiring density from Y0")

∃ Y0 ∈ Ω0, U0 - nbhd of Y0, time T0, and A0 ∈ Ω0 with m0(A0) > 0, s.t.
- ∀ Y ∈ U0, [(ΦT0)∗δY ]≪ has strictly positive density on A0.
- In particular, [(ΦT0)∗δY ]≪(Ω) 6= 0.

Proposition 3 ("getting from any admissible state to Y0")

Given X ∈ Ω admissible, Y0 and U0 from Proposition 2
∃ time T , a sample path σ : X → Y0 on [0, T ], and a canonical
neighborhood Σ of σ, s.t. each sample path in Σ ends in U0.
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Proof of the Theorem

Propositions 2 and 3 =⇒ ∀ admissible state X ∈ Ω, ∃ U - nbhd
of X s.t. ∀Y ∈ U:

- [(ΦT+T0)∗δY ]≪ has strictly positive density on A0

- in particular, [(ΦT+T0)∗δY ]≪(Ω) 6= 0.
(Φt )∗µ = [(Φt )∗(µ≪)]≪ + [(Φt )∗(µ≪)]⊥ + [(Φt )∗(µ⊥)]≪ + [(Φt )∗(µ⊥)]⊥

Assume µ⊥(Ω) 6= 0.
- µ⊥(S) = 0 + fact above + Prop 1 ("ac measures stay ac")

=⇒ ∀t > T + T0, [(Φt )∗µ⊥]≪(Ω) 6= 0.
- Prop 1 ("ac measures stay ac") =⇒ ∀t > 0,

[(Φt )∗(µ≪)]⊥(Ω) = 0.
- =⇒ ∀t > T + T0, [(Φt )∗µ]≪(Ω) > µ≪(Ω),

which contradicts the invariance of µ.

=⇒ µ ≪ m.

For all admissible states, the ergodic averages are equal for measure 1
sets of sample paths.

=⇒ µ is ergodic.
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Proposition 1 ("ac measures stay ac")

ν ≪ m =⇒ (Φt)∗ν ≪ m for any t > 0.

No particles exit or enter: measure stays a.c. since mk is.

When a particle exits, the measure projects to Ωk−1 and
stays a.c.

- Ωk+1 is 4D larger than Ωk .

- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

When a particle enters, the measure becomes a product
measure of two measures.

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions



Settings
Chain of Disks in a Rectangle

Other Geometries

Results
Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

ν ≪ m =⇒ (Φt)∗ν ≪ m for any t > 0.

No particles exit or enter: measure stays a.c. since mk is.

When a particle exits, the measure projects to Ωk−1 and
stays a.c.

- Ωk+1 is 4D larger than Ωk .

- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

When a particle enters, the measure becomes a product
measure of two measures.

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions



Settings
Chain of Disks in a Rectangle

Other Geometries

Results
Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

ν ≪ m =⇒ (Φt)∗ν ≪ m for any t > 0.

No particles exit or enter: measure stays a.c. since mk is.

When a particle exits, the measure projects to Ωk−1 and
stays a.c.

- Ωk+1 is 4D larger than Ωk .

- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

When a particle enters, the measure becomes a product
measure of two measures.

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions



Settings
Chain of Disks in a Rectangle

Other Geometries

Results
Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

ν ≪ m =⇒ (Φt)∗ν ≪ m for any t > 0.

No particles exit or enter: measure stays a.c. since mk is.

When a particle exits, the measure projects to Ωk−1 and
stays a.c.

- Ωk+1 is 4D larger than Ωk .

- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

When a particle enters, the measure becomes a product
measure of two measures.

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions



Settings
Chain of Disks in a Rectangle

Other Geometries

Results
Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

ν ≪ m =⇒ (Φt)∗ν ≪ m for any t > 0.

No particles exit or enter: measure stays a.c. since mk is.

When a particle exits, the measure projects to Ωk−1 and
stays a.c.

- Ωk+1 is 4D larger than Ωk .

- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

When a particle enters, the measure becomes a product
measure of two measures.

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions



Settings
Chain of Disks in a Rectangle

Other Geometries

Results
Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

ν ≪ m =⇒ (Φt)∗ν ≪ m for any t > 0.

No particles exit or enter: measure stays a.c. since mk is.

When a particle exits, the measure projects to Ωk−1 and
stays a.c.

- Ωk+1 is 4D larger than Ωk .

- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

When a particle enters, the measure becomes a product
measure of two measures.

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions



Settings
Chain of Disks in a Rectangle

Other Geometries

Results
Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Proof of Proposition 2

Proposition 2

Given Y0 ∈ Ω0 ωj 6= 0 ∀j ,
∃ nbhd U0 of Y0, time T0, and A0 ∈ Ω0 with m0(A0) > 0, s.t.
- ∀ Y ∈ U0, [(ΦT0

)∗δY ]≪ has strictly positive density on A0.
- In particular, [(ΦT0

)∗δY ]≪(Ω) 6= 0.
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Proposition 2 ("acquiring density from Y0")

Given Y0 ∈ Ω0 ωj 6= 0 ∀j ,
∃ nbhd U0 of Y0, time T0, and A0 ∈ Ω0 with m0(A0) > 0, s.t.
- ∀ Y ∈ U0, [(ΦT0

)∗δY ]≪ has strictly positive density on A0.
- In particular, [(ΦT0

)∗δY ]≪(Ω) 6= 0.

Particles are injected with 4D uncertainty:
1D - time, 1D - position, 2D - velocity.

4D particle hits a disk (ϕ,ω) ⇒ 2D disk.
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Proposition 3 ("getting from any admissible state to Y0")

Given X ∈ Ω admissible, Y0 and U0 from Proposition 2,
∃ time T , a sample path σ : X → Y0 on [0, T ], and a canonical
neighborhood Σ of σ, s.t. each sample path in Σ ends in U0.

1 Flush particles out: σX : X → X0 ∈ Ω0.
2 Go from any X0 to Y0: σ0 : X0 → Y0

3 σ = σX ∪ σ0 and

- and ∃ a canonical neighborhood Σ of σ such that each
sample path in Σ ends up in U0
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Flush Particles Out: 1 particle

Proper projected particle path:
- finite number of straight segments that meet on ∂Γ
- meet at wall: incoming and outgoing angles are equal
- meet at disk: any angles except ±π

2

There exists a proper projected particle path to an exit if
the first collision is non-tangential.
Can follow a proper projected particle path

- if can set the angular velocities of the disks to appropriate
values at appropriate times
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Setting Angular Velocities

Controllability Lemma

ω - angular velocity of Dj ; no particles.
Given ω′ and time τ , there exists σ on [0, τ ] s.t.

- at time τ , Dj has ang. vel. ω′ and no particles.
- on [0, τ ], all particles follow admissible paths and

only hit disks D1, · · · , Dj−1 except one collision with Dj .
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1: Flush Particles Out

The Main Lemma =⇒ can follow any proper projected
particle path.
Many particle system:

- want to flush each out via a proper projected particle
path

- but might get simultaneous collisions with the same
disks.

- near a proper projected particle path, particle’s final
positions and velocities depend continuously on its
initial positions and velocities.

- ⇒ can arrange so that no simultaneous collisions with
same disks occur.
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2: From X0 to Y0

Lemma

X0, Y0 ∈ Ω0:

X0 : (ϕ1, ω1), · · · , (ϕN , ωN)

Y0 : (ϕ′

1, ω
′

1), · · · , (ϕ′

N , ω′

N)

Given time T , there exists a sample path σ0 : X0 → Y0 such
that all particles follow admissible paths.

Proof: application of the Main Lemma 2N times.
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2: From X0 to Y0

Lemma

X0, Y0 ∈ Ω0:

X0 : (ϕ1, ω1), · · · , (ϕN , ωN)

Y0 : (ϕ′

1, ω
′

1), · · · , (ϕ′

N , ω′

N)

Given time T , there exists a sample path σ0 : X0 → Y0 such
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3:Canonical Neighborhood of σ

Near a proper projected particle path, particle’s final
position and velocity depend continuously on its initial
position and velocity and angular velocities of the disks it
collides with.

The position and velocity of an injected particle depends
continuously on the injections parameters.

If in σ : X → Y0 all particles follow admissible paths,
∃ a canonical neighborhood Σ of σ s.t. each sample path in
Σ ends in U0.
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Conclusion

We have shown:

Theorem

If ∃µ - invariant measure with
µ(states with "trapped particles") = 0

=⇒
µ ≪ m and ergodic.

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions



Settings
Chain of Disks in a Rectangle

Other Geometries

Results
Intermediate Propositions and Proof of Theorem
Proofs of Propositions

Conclusion

We have shown:

Theorem

If ∃µ - invariant measures with
µ(states with "trapped particles") = 0

=⇒
µ ≪ m and ergodic.

Can generalize to systems with similar geometries, e.g.
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The Theorem applies to systems
with other geometries with only
slight modifications.
Things to check:

- Can flush particles out:
proper projected particle path
from any point on any disk to
an exit.

- Controllability Lemma applies:
proper projected particle path
from an opening to a disk that
meets that disk radially
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Illuminated Cells

(a) an illuminated cell (b) an illuminated cell

Figure: Illumination Property
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