Ergodicity of some open systems with particle-disk interactions

Tatiana Yarmola

NSF Postdoctoral Fellow University of Maryland - College Park

Corinaldo, Italy June 3, 2010

< □ > < 同 > < 回 > < 回

Closed System

• Γ - domain with piecewise C^3 boundary.

• D_1, \cdots, D_N pinned down disks:

- angular positions $\varphi_1, \cdots, \varphi_N$
- angular velocities $\omega_1, \cdots, \omega_N$
- Particle Collisions
 - with wall:

$$V_{\perp}' = -V_{\perp}; V_t' = V_t;$$

- with disks:

 $v'_{\perp} = -v_{\perp}; v'_t = R\omega; R\omega' = v_t.^1$

- particles do not interact with each other.

¹ particle-disk interactions introduced in

[Klages, Nicolis, and Rateitschak 2000] and

[Larralde, Leyvraz, and Mejía-Monasterio 2003]

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

Closed System

- Γ domain with piecewise C^3 boundary.
- D_1, \cdots, D_N pinned down disks:
 - angular positions $\varphi_1, \cdots, \varphi_N$
 - angular velocities $\omega_1, \cdots, \omega_N$

Particle Collisions

- with wall:

$$V_{\perp}' = -V_{\perp}; V_t' = V_t;$$

- with disks:

 $v'_{\perp} = -v_{\perp}; v'_t = R\omega; R\omega' = v_t.^1$

- particles do not interact with each other.

¹ particle-disk interactions introduced in

[Klages, Nicolis, and Rateitschak 2000] and

[Larralde, Leyvraz, and Mejía-Monasterio 2003]

Closed System

- Γ domain with piecewise C^3 boundary.
- D_1, \cdots, D_N pinned down disks:
 - angular positions $\varphi_1, \cdots, \varphi_N$
 - angular velocities $\omega_1, \cdots, \omega_N$
- Particle Collisions
 - with wall:

$$V'_{\perp} = -V_{\perp}; V'_t = V_t;$$

- with disks:
 - $\mathbf{v}_{\perp}' = -\mathbf{v}_{\perp}; \, \mathbf{v}_t' = \mathbf{R}\omega; \, \mathbf{R}\omega' = \mathbf{v}_t.^1$
- particles do not interact with each other.

¹ particle-disk interactions introduced in

[Klages, Nicolis, and Rateitschak 2000] and

[Larralde, Leyvraz, and Mejía-Monasterio 2003]

Closed System

- Γ domain with piecewise C^3 boundary.
- D_1, \cdots, D_N pinned down disks:
 - angular positions $\varphi_1, \cdots, \varphi_N$
 - angular velocities $\omega_1, \cdots, \omega_N$
- Particle Collisions
 - with wall:

$$V'_{\perp} = -V_{\perp}; V'_t = V_t;$$

- with disks:
 - $\mathbf{v}_{\perp}' = -\mathbf{v}_{\perp}; \, \mathbf{v}_{t}' = \mathbf{R}\omega; \, \mathbf{R}\omega' = \mathbf{v}_{t}.^{1}$

 particles do not interact with each other.

¹ particle-disk interactions introduced in

[Klages, Nicolis, and Rateitschak 2000] and

[Larralde, Leyvraz, and Mejía-Monasterio 2003]

Closed System

- Γ domain with piecewise C^3 boundary.
- D_1, \cdots, D_N pinned down disks:
 - angular positions $\varphi_1, \cdots, \varphi_N$
 - angular velocities $\omega_1, \cdots, \omega_N$
- Particle Collisions
 - with wall:

$$V'_{\perp} = -V_{\perp}; V'_t = V_t;$$

- with disks:

$$\mathbf{v}_{\perp}^{\prime} = -\mathbf{v}_{\perp}; \, \mathbf{v}_{t}^{\prime} = \mathbf{R}\omega; \, \mathbf{R}\omega^{\prime} = \mathbf{v}_{t}.^{1}$$

particles do not interact with each

¹ particle-disk interactions introduced in [Klages, Nicolis, and Rateitschak 2000] and [Larralde, Leyvraz, and Mejía-Monasterio 2003]

Image: A matrix and a matrix

< ∃ ► < ∃ ►</p>

Closed System

- Γ domain with piecewise C^3 boundary.
- D_1, \cdots, D_N pinned down disks:
 - angular positions $\varphi_1, \cdots, \varphi_N$
 - angular velocities $\omega_1, \cdots, \omega_N$
- Particle Collisions
 - with wall:

$$V'_{\perp} = -V_{\perp}; V'_t = V_t;$$

- with disks:

 $\mathbf{v}_{\perp}' = -\mathbf{v}_{\perp}; \, \mathbf{v}_t' = \mathbf{R}\omega; \, \mathbf{R}\omega' = \mathbf{v}_t.^1$

- particles do not interact with each other.

¹ particle-disk interactions introduced in [Klages, Nicolis, and Rateitschak 2000] and

[Larralde, Leyvraz, and Mejía-Monasterio 2003]

< ロ > < 同 > < 回 > < 回 > < 回 >

Open System

• $\gamma_1, \cdots, \gamma_l$ - openings.

• The system is coupled to a heat bath at each.

- injection times exponentially distributed with rates *ρ*₁, · · · , *ρ*_l;
- distributions for positions $q_i \in \gamma_i$ and velocities

 $v_i \in H = \{(v_x, v_y : v_x > 0)\}$ are finite and positive everywhere.

イロト イ押ト イヨト イヨト

Open System

• $\gamma_1, \cdots, \gamma_l$ - openings.

• The system is coupled to a heat bath at each.

- injection times exponentially distributed with rates *ρ*₁, · · · , *ρ*_l;
- distributions for positions $q_i \in \gamma_i$ and velocities

 $v_i \in H = \{(v_x, v_y : v_x > 0)\}$ are finite and positive everywhere.

イロト イ押ト イヨト イヨト

Open System

- $\gamma_1, \cdots, \gamma_l$ openings.
- The system is coupled to a heat bath at each.
 - injection times exponentially distributed with rates *ρ*₁, · · · , *ρ*_l;
 - distributions for positions q_i ∈ γ_i and velocities
 v_i ∈ H = {(v_x, v_y : v_x > 0)} are

finite and positive everywhere.

イロト イ押ト イヨト イヨト

Open System

- $\gamma_1, \cdots, \gamma_l$ openings.
- The system is coupled to a heat bath at each.
 - injection times exponentially distributed with rates *ρ*₁, · · · , *ρ*_l;
 - distributions for positions $q_i \in \gamma_i$ and velocities

 $v_i \in H = \{(v_x, v_y : v_x > 0)\}$ are finite and positive everywhere.

イロト イ押ト イヨト イヨト

Open System

- $\gamma_1, \cdots, \gamma_l$ openings.
- The system is coupled to a heat bath at each.
 - injection times exponentially distributed with rates *ρ*₁, · · · , *ρ*_l;
 - distributions for positions $q_i \in \gamma_i$ and velocities

 $v_i \in H = \{(v_x, v_y : v_x > 0)\}$ are finite and positive everywhere.

イロト イ押ト イヨト イヨト

The Phase Space

• All particles are identical and indistinguishable.

The Phase Space

 $\Omega = \sqcup_k \Omega_k$

- $\Omega_k = (\Gamma^k \times \partial D_1 \times \cdots \times \partial D_N \times \mathbb{R}^{2k+N}) / \sim$
- invariant measure for the closed system with k particles:

$$m_k = (\lambda_2|_{\Gamma})^k \times \rho|_{\partial D_1} \times \cdots \times \rho|_{\partial D_N} \times \lambda_{2k+N})/\sim .$$

The Phase Space

- All particles are identical and indistinguishable.
- The Phase Space

$\Omega = \sqcup_k \Omega_k$

- $\Omega_k = (\Gamma^k \times \partial D_1 \times \cdots \times \partial D_N \times \mathbb{R}^{2k+N}) / \sim$
- invariant measure for the closed system with k particles:

$$m_k = (\lambda_2|_{\Gamma})^k \times \rho|_{\partial D_1} \times \cdots \times \rho|_{\partial D_N} \times \lambda_{2k+N})/\sim .$$

< □ > < 同 > < 三 > <

The Phase Space

- All particles are identical and indistinguishable.
- The Phase Space

 $\Omega = \sqcup_k \Omega_k$

- $\Omega_k = (\Gamma^k \times \partial D_1 \times \cdots \times \partial D_N \times \mathbb{R}^{2k+N})/\sim$
- invariant measure for the closed system with k particles:

$$m_k = (\lambda_2|_{\Gamma})^k \times \rho|_{\partial D_1} \times \cdots \times \rho|_{\partial D_N} \times \lambda_{2k+N})/\sim .$$

Invariant Measures

Markov Process Φ_τ

- no particles enter or exit: deterministic flow on Ω_k
- a particle exits: jumps from Ω_k to Ω_{k-1}
- a particle enters: jumps from Ω_k to Ω_{k+1}

Invariant measures:

- existence, uniqueness, ergodicity, absolute continuity with respect to m,
- where *m* is a measure on Ω that has conditional densities m_k on Ω_k .

Invariant Measures

- Markov Process Φ_τ
 - no particles enter or exit: deterministic flow on Ω_k
 - a particle exits: jumps from Ω_k to Ω_{k-1}
 - a particle enters: jumps from Ω_k to Ω_{k+1}
- Invariant measures:
 - existence, uniqueness, ergodicity, absolute continuity with respect to *m*,
 - where *m* is a measure on Ω that has conditional densities m_k on Ω_k .

< □ > < @ > < @ > < @

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Results: Chain of Disks in a Rectangle

Geometry introduced in [Lin and Young 2010]

Results Intermediate Propositions and Proof of Theore Proofs of Propositions

Special Case Results

"trapped particles" (including stopped particles)

Theorem

If $\exists \mu$ - invariant measure with μ (states with "trapped particles") = 0 \Rightarrow 1. $\mu \ll$ m and 2. μ is ergodic.

Results Intermediate Propositions and Proof of Theore Proofs of Propositions

Special Case Results

"trapped particles" (including stopped particles)

Theorem

If $\exists \mu$ - invariant measure with μ (states with "trapped particles") = 0 \Rightarrow 1. $\mu \ll m$ and 2. μ is ergodic.

Settings Results Chain of Disks in a Rectangle Intermediate Propositions and Proof of Theorem Other Geometries Proofs of Propositions

Implications

Corollary 1

Any ergodic invariant measure ν can be written

 $\nu = \pi_{\mathbf{k}} \times \mu,$

- *π_k* is a singular measure supported on k "trapped trajectories"
- μ is the absolutely continuous ergodic measure from the Theorem

Corollary 2

If there exists any invariant measure, then there exists the unique absolutely continuous measure μ .

・ロット (雪) (日) (日)

э

Settings Results Chain of Disks in a Rectangle Intermediate Propositions and Proof of Theorem Other Geometries Proofs of Propositions

Implications

Corollary 1

Any ergodic invariant measure ν can be written

 $\nu = \pi_{\mathbf{k}} \times \mu,$

- *π_k* is a singular measure supported on k "trapped trajectories"
- μ is the absolutely continuous ergodic measure from the Theorem

Corollary 2

If there exists any invariant measure, then there exists the unique absolutely continuous measure μ .

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Preliminaries

Some ideas in the proof borrowed from [Balint, Lin, and Young 2010] and [Eckmann and Jacquet 2007]

 Admissible State = NO "trapped particles" + assuming no particles are injected, the first collisions of particles with disks (if any) are

- NOT simultaneous with same disk and
- NOT tangential.
- Let S be the set of all non-admissible states.

Lemma

 μ -inv. + μ (states with "trapped particles) = 0 $\Rightarrow \mu(S) = 0$.

Corollary

 $u \ll \mu \;\; \Rightarrow (\Phi_{ au})_*
u$ is well defined $\forall au > 0$

Settings Results Chain of Disks in a Rectangle Internet Other Geometries Proofs

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Preliminaries

Some ideas in the proof borrowed from [Balint, Lin, and Young 2010] and [Eckmann and Jacquet 2007]

 Admissible State = NO "trapped particles" + assuming no particles are injected, the first collisions of particles with disks (if any) are

- NOT simultaneous with same disk and
- NOT tangential.
- Let S be the set of all non-admissible states.

Lemma

 μ -inv. + μ (states with "trapped particles) = 0 $\Rightarrow \mu(S) = 0$.

Corollary

 $u \ll \mu \;\; \Rightarrow (\Phi_{ au})_*
u$ is well defined $\forall au > 0$

Settings Results Chain of Disks in a Rectangle Other Geometries Proofs of

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Preliminaries

Some ideas in the proof borrowed from [Balint, Lin, and Young 2010] and [Eckmann and Jacquet 2007]

 Admissible State = NO "trapped particles" + assuming no particles are injected, the first collisions of particles with disks (if any) are

- NOT simultaneous with same disk and
- NOT tangential.
- Let S be the set of all non-admissible states.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Preliminaries

Some ideas in the proof borrowed from [Balint, Lin, and Young 2010] and [Eckmann and Jacquet 2007]

 Admissible State = NO "trapped particles" + assuming no particles are injected, the first collisions of particles with disks (if any) are

- NOT simultaneous with same disk and
- NOT tangential.
- Let S be the set of all non-admissible states.

Lemma

 μ -inv. + μ (states with "trapped particles) = 0 $\Rightarrow \mu(S) = 0$.

Corollary

 $u \ll \mu \;\; \Rightarrow (\Phi_{ au})_*
u$ is well defined orall au > 0

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Preliminaries

Some ideas in the proof borrowed from [Balint, Lin, and Young 2010] and [Eckmann and Jacquet 2007]

 Admissible State = NO "trapped particles" + assuming no particles are injected, the first collisions of particles with disks (if any) are

- NOT simultaneous with same disk and
- NOT tangential.
- Let S be the set of all non-admissible states.

Lemma

 μ -inv. + μ (states with "trapped particles) = 0 $\Rightarrow \mu(S) = 0$.

Corollary

$$u \ll \mu \;\; \Rightarrow (\Phi_{ au})_*
u$$
 is well defined $\forall au > 0$

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Sample Paths and Canonical Neighborhoods

- Fix a sequence of particle injections ε = (ε₁, · · · , ε_n) at times 0 < t₁ < t₂ < · · · < t_n < T,
 - $\epsilon_j = (t_j, \xi_j, v_j) \in [0, T] \times \cup \gamma_i \times H.$
- σ a sample path on [0, T] given ϵ and $X \in \Omega$
 - = the path in the phase space Ω s.t.
 - σ starts from the state $X \in \Omega$
 - particles are injected according to ε.
- Σ a canonical neighborhood of σ if
 - ∃ open neighborhoods *U* of *X* and $T_j \times Q_j \times V_j$ of (t_j, ξ_j, v_j) with nonintersecting $T_j \subset [0, T]$ s.t.
 - each sample path in Σ starts with an initial condition in U and exactly one particle is injected at some time in each T_j , with position in Q_j , and velocity in V_j .

ヘロン 人間 とくほ とくほ とう

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Sample Paths and Canonical Neighborhoods

- Fix a sequence of particle injections ε = (ε₁, · · · , ε_n) at times 0 < t₁ < t₂ < · · · < t_n < T,
 - $\epsilon_j = (t_j, \xi_j, v_j) \in [0, T] \times \cup \gamma_i \times H.$
- σ a sample path on [0, T] given ϵ and $X \in \Omega$
 - = the path in the phase space Ω s.t.
 - σ starts from the state $X \in \Omega$
 - particles are injected according to ϵ .
- Σ a canonical neighborhood of σ if
 - ∃ open neighborhoods *U* of *X* and $T_j \times Q_j \times V_j$ of (t_j, ξ_j, v_j) with nonintersecting $T_j \subset [0, T]$ s.t.
 - each sample path in Σ starts with an initial condition in U and exactly one particle is injected at some time in each T_j , with position in Q_j , and velocity in V_j .

ヘロト 人間 とくほ とくほ とう

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Sample Paths and Canonical Neighborhoods

- Fix a sequence of particle injections ε = (ε₁, · · · , ε_n) at times 0 < t₁ < t₂ < · · · < t_n < T,
 - $\epsilon_j = (t_j, \xi_j, v_j) \in [0, T] \times \cup \gamma_i \times H.$
- σ a sample path on [0, T] given ϵ and $X \in \Omega$
 - = the path in the phase space Ω s.t.
 - σ starts from the state $X \in \Omega$
 - particles are injected according to ϵ .
- Σ a canonical neighborhood of σ if
 - \exists open neighborhoods *U* of *X* and $T_j \times Q_j \times V_j$ of (t_j, ξ_j, v_j) with nonintersecting $T_j \subset [0, T]$ s.t.
 - each sample path in Σ starts with an initial condition in U and exactly one particle is injected at some time in each T_j , with position in Q_j , and velocity in V_j .

ヘロト 人間 とくほ とくほ とう

3

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Intermediate Propositions

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

Proposition 2 ("acquiring density from Y_0 ")

∃ $Y_0 \in \Omega_0$, U_0 - nbhd of Y_0 , time T_0 , and $A_0 \in \Omega_0$ with $m_0(A_0) > 0$, s.t. - $\forall Y \in U_0$, $[(\Phi_{T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0 . - In particular, $[(\Phi_{T_0})_*\delta_Y]_{\ll}(\Omega) \neq 0$.

Proposition 3 ("getting from any admissible state to Y_0 ")

Given $X \in \Omega$ admissible, Y_0 and U_0 from Proposition 2 \exists time T, a sample path $\sigma : X \to Y_0$ on [0, T], and a canonical neighborhood Σ of σ , s.t. each sample path in Σ ends in U_0 .

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Intermediate Propositions

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

Proposition 2 ("acquiring density from Y_0 ")

∃ $Y_0 \in \Omega_0$, U_0 - *nbhd* of Y_0 , *time* T_0 , *and* $A_0 \in \Omega_0$ *with* $m_0(A_0) > 0$, *s.t.* - $\forall Y \in U_0$, $[(\Phi_{T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0 . - *In* particular, $[(\Phi_{T_0})_*\delta_Y]_{\ll}(\Omega) \neq 0$.

Proposition 3 ("getting from any admissible state to Y_0 ")

Given $X \in \Omega$ admissible, Y_0 and U_0 from Proposition 2 \exists time T, a sample path $\sigma : X \to Y_0$ on [0, T], and a canonical neighborhood Σ of σ , s.t. each sample path in Σ ends in U_0 .

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Intermediate Propositions

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

Proposition 2 ("acquiring density from Y_0 ")

∃ $Y_0 \in \Omega_0$, U_0 - *nbhd* of Y_0 , *time* T_0 , *and* $A_0 \in \Omega_0$ *with* $m_0(A_0) > 0$, *s.t.* - $\forall Y \in U_0$, $[(\Phi_{T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0 . - *In particular*, $[(\Phi_{T_0})_*\delta_Y]_{\ll}(\Omega) \neq 0$.

Proposition 3 ("getting from any admissible state to Y_0 ")

Given $X \in \Omega$ admissible, Y_0 and U_0 from Proposition 2 \exists time T, a sample path $\sigma : X \to Y_0$ on [0, T], and a canonical neighborhood Σ of σ , s.t. each sample path in Σ ends in U_0 .

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}(\Omega) \neq 0.$
 - $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$

• Assume $\mu_{\perp}(\Omega) \neq 0$.

- $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
- Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0,$ $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
- $\implies \forall t > T + T_0$, $[(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega)$, which contradicts the invariance of μ .

$$\implies \mu \ll m.$$

• For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}(\Omega) \neq 0.$

 $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$ • Assume $\mu_{\perp}(\Omega) \neq 0$.

- $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
- Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0,$ $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
- $\implies \forall t > T + T_0$, $[(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega)$, which contradicts the invariance of μ .

 $\implies \mu \ll m.$

 For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

 $\implies \mu$ is ergodic.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

 $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$

• Assume $\mu_{\perp}(\Omega) \neq 0$.

- $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
- Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0$, $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
- $\implies \forall t > T + T_0$, $[(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega)$, which contradicts the invariance of μ .

 $\implies \mu \ll m.$

• For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

 $\implies \mu$ is ergodic.

(a)
Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$
 - $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$
- Assume $\mu_{\perp}(\Omega) \neq 0$.
 - $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
 - Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0,$ $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
 - $\implies \forall t > T + T_0$, $[(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega)$, which contradicts the invariance of μ .

 $\implies \mu \ll m.$

• For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

 $\implies \mu$ is ergodic.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

 $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$

- Assume $\mu_{\perp}(\Omega) \neq 0$.
 - $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
 - Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0,$ $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
 - $\implies \forall t > T + T_0, [(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega),$ which contradicts the invariance of μ .

 $\implies \mu \ll m.$

 For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

 $\implies \mu$ is ergodic.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

 $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$

- Assume $\mu_{\perp}(\Omega) \neq 0$.
 - $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
 - Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0$, $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
 - $\implies \forall t > T + T_0$, $[(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega)$, which contradicts the invariance of μ .

 $\implies \mu \ll m.$

• For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

 $\implies \mu$ is ergodic.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

 $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$

- Assume $\mu_{\perp}(\Omega) \neq 0$.
 - $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
 - Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0,$ $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
 - $\implies \forall t > T + T_0$, $[(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega)$, which contradicts the invariance of μ .

 $\implies \mu \ll m.$

• For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

 $\implies \mu$ is ergodic.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

 $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$

- Assume $\mu_{\perp}(\Omega) \neq 0$.
 - $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
 - Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0,$ $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
 - $\implies \forall t > T + T_0$, $[(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega)$, which contradicts the invariance of μ .

$$\implies \mu \ll m.$$

 For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

$$\implies \mu$$
 is ergodic.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}(\Omega) \neq 0.$
 - $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$
- Assume $\mu_{\perp}(\Omega) \neq 0$.
 - $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
 - Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0,$ $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
 - $\implies \forall t > T + T_0$, $[(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega)$, which contradicts the invariance of μ .

$$\implies \mu \ll m.$$

• For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of the Theorem

- Propositions 2 and 3 ⇒ ∀ admissible state X ∈ Ω, ∃ U nbhd of X s.t. ∀Y ∈ U:
 - $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}$ has strictly positive density on A_0
 - in particular, $[(\Phi_{T+T_0})_*\delta_Y]_{\ll}(\Omega) \neq 0.$
 - $(\Phi_t)_*\mu = [(\Phi_t)_*(\mu_{\ll})]_{\ll} + [(\Phi_t)_*(\mu_{\ll})]_{\perp} + [(\Phi_t)_*(\mu_{\perp})]_{\ll} + [(\Phi_t)_*(\mu_{\perp})]_{\perp}$
- Assume $\mu_{\perp}(\Omega) \neq 0$.
 - $\mu_{\perp}(S) = 0$ + fact above + Prop 1 ("ac measures stay ac") $\implies \forall t > T + T_0, [(\Phi_t)_*\mu_{\perp}]_{\ll}(\Omega) \neq 0.$
 - Prop 1 ("ac measures stay ac") $\Longrightarrow \forall t > 0,$ $[(\Phi_t)_*(\mu_{\ll})]_{\perp}(\Omega) = 0.$
 - $\implies \forall t > T + T_0, [(\Phi_t)_*\mu]_{\ll}(\Omega) > \mu_{\ll}(\Omega),$ which contradicts the invariance of μ .

$$\implies \mu \ll m.$$

 For all admissible states, the ergodic averages are equal for measure 1 sets of sample paths.

$$\implies \mu$$
 is ergodic.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

- No particles exit or enter: measure stays a.c. since m_k is.
- When a particle exits, the measure projects to Ω_{k-1} and stays a.c.
- Ω_{k+1} is 4D larger than Ω_k .
- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

• When a particle enters, the measure becomes a product measure of two measures.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

• No particles exit or enter: measure stays a.c. since m_k is.

- When a particle exits, the measure projects to Ω_{k-1} and stays a.c.
- Ω_{k+1} is 4D larger than Ω_k .
- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

• When a particle enters, the measure becomes a product measure of two measures.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

- No particles exit or enter: measure stays a.c. since m_k is.
- When a particle exits, the measure projects to Ω_{k-1} and stays a.c.
 - Ω_{k+1} is 4D larger than Ω_k .
 - Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

• When a particle enters, the measure becomes a product measure of two measures.

ヘロン 人間 とくほ とくほ とう

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

- No particles exit or enter: measure stays a.c. since m_k is.
- When a particle exits, the measure projects to Ω_{k-1} and stays a.c.
- Ω_{k+1} is 4D larger than Ω_k .
- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

• When a particle enters, the measure becomes a product measure of two measures.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

- No particles exit or enter: measure stays a.c. since m_k is.
- When a particle exits, the measure projects to Ω_{k-1} and stays a.c.
- Ω_{k+1} is 4D larger than Ω_k .
- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

• When a particle enters, the measure becomes a product measure of two measures.

ヘロン 人間 とくほ とくほ とう

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 1

Proposition 1 ("ac measures stay ac")

 $\nu \ll m \Longrightarrow (\Phi_t)_* \nu \ll m$ for any t > 0.

- No particles exit or enter: measure stays a.c. since m_k is.
- When a particle exits, the measure projects to Ω_{k-1} and stays a.c.
- Ω_{k+1} is 4D larger than Ω_k .
- Particles are injected with 4D uncertainty:

1D - time, 1D - position, 2D - velocity.

• When a particle enters, the measure becomes a product measure of two measures.

ヘロン 人間 とくほ とくほ とう

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 2

Proposition 2

Given $Y_0 \in \Omega_0 \ \omega_j \neq 0 \ \forall j$, $\exists \ nbhd \ U_0 \ of \ Y_0, \ time \ T_0, \ and \ A_0 \in \Omega_0 \ with \ m_0(A_0) > 0, \ s.t.$ $- \ \forall \ Y \in U_0, \ [(\Phi_{T_0})_* \delta_Y]_{\ll} \ has \ strictly \ positive \ density \ on \ A_0.$ $- \ In \ particular, \ [(\Phi_{T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 2

Proposition 2 ("acquiring density from Y_0 ")

Given $Y_0 \in \Omega_0 \ \omega_j \neq 0 \ \forall j$, $\exists \ nbhd \ U_0 \ of \ Y_0, \ time \ T_0, \ and \ A_0 \in \Omega_0 \ with \ m_0(A_0) > 0, \ s.t.$ $- \ \forall \ Y \in U_0, \ [(\Phi_{T_0})_* \delta_Y]_{\ll} \ has \ strictly \ positive \ density \ on \ A_0.$ $- \ In \ particular, \ [(\Phi_{T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

 Particles are injected with 4D uncertainty: 1D - time, 1D - position, 2D - velocity.

• 4D particle hits a disk $(\varphi, \omega) \Rightarrow$ 2D disk.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 2

Proposition 2 ("acquiring density from Y_0 ")

Given $Y_0 \in \Omega_0 \ \omega_j \neq 0 \ \forall j$, $\exists \ nbhd \ U_0 \ of \ Y_0, \ time \ T_0, \ and \ A_0 \in \Omega_0 \ with \ m_0(A_0) > 0, \ s.t.$ $- \ \forall \ Y \in U_0, \ [(\Phi_{T_0})_* \delta_Y]_{\ll} \ has \ strictly \ positive \ density \ on \ A_0.$ $- \ In \ particular, \ [(\Phi_{T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

- Particles are injected with 4D uncertainty: 1D - time, 1D - position, 2D - velocity.
- 4D particle hits a disk $(\varphi, \omega) \Rightarrow$ 2D disk.

・ ロ ト ・ 厚 ト ・ 回 ト ・

.⊒...>

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 2

Proposition 2 ("acquiring density from Y_0 ")

Given $Y_0 \in \Omega_0 \ \omega_j \neq 0 \ \forall j$, $\exists \ nbhd \ U_0 \ of \ Y_0, \ time \ T_0, \ and \ A_0 \in \Omega_0 \ with \ m_0(A_0) > 0, \ s.t.$ $- \ \forall \ Y \in U_0, \ [(\Phi_{T_0})_* \delta_Y]_{\ll} \ has \ strictly \ positive \ density \ on \ A_0.$ $- \ In \ particular, \ [(\Phi_{T_0})_* \delta_Y]_{\ll}(\Omega) \neq 0.$

- Particles are injected with 4D uncertainty: 1D - time, 1D - position, 2D - velocity.
- 4D particle hits a disk $(\varphi, \omega) \Rightarrow$ 2D disk.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 3

Proposition 3 ("getting from any admissible state to Y_0 ")

Given $X \in \Omega$ admissible, Y_0 and U_0 from Proposition 2, \exists time *T*, a sample path $\sigma : X \to Y_0$ on [0, T], and a canonical neighborhood Σ of σ , s.t. each sample path in Σ ends in U_0 .

- **1** Flush particles out: $\sigma_X : X \to X_0 \in \Omega_0$.
- ② Go from any X_0 to Y_0 : $\sigma_0 : X_0 \rightarrow Y_0$
- $o = \sigma_X \cup \sigma_0$ and
 - and \exists a canonical neighborhood Σ of σ such that each sample path in Σ ends up in U_0

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 3

Proposition 3 ("getting from any admissible state to Y_0 ")

Given $X \in \Omega$ admissible, Y_0 and U_0 from Proposition 2, \exists time *T*, a sample path $\sigma : X \to Y_0$ on [0, T], and a canonical neighborhood Σ of σ , s.t. each sample path in Σ ends in U_0 .

- **()** Flush particles out: $\sigma_X : X \to X_0 \in \Omega_0$.
- **2** Go from any X_0 to Y_0 : $\sigma_0: X_0 o Y_0$
- $\ \ \, \circ = \sigma_X \cup \sigma_0$ and
 - and ∃ a canonical neighborhood Σ of *σ* such that each sample path in Σ ends up in U₀

ヘロト 人間 とくほ とくほ とう

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 3

Proposition 3 ("getting from any admissible state to Y_0 ")

Given $X \in \Omega$ admissible, Y_0 and U_0 from Proposition 2, \exists time *T*, a sample path $\sigma : X \to Y_0$ on [0, T], and a canonical neighborhood Σ of σ , s.t. each sample path in Σ ends in U_0 .

- **()** Flush particles out: $\sigma_X : X \to X_0 \in \Omega_0$.
- **2** Go from any X_0 to Y_0 : $\sigma_0 : X_0 \to Y_0$
- $o = \sigma_X \cup \sigma_0$ and
 - and ∃ a canonical neighborhood Σ of *σ* such that each sample path in Σ ends up in U₀

ヘロン 人間 とくほ とくほ とう

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Proof of Proposition 3

Proposition 3 ("getting from any admissible state to Y_0 ")

Given $X \in \Omega$ admissible, Y_0 and U_0 from Proposition 2, \exists time *T*, a sample path $\sigma : X \to Y_0$ on [0, T], and a canonical neighborhood Σ of σ , s.t. each sample path in Σ ends in U_0 .

- **()** Flush particles out: $\sigma_X : X \to X_0 \in \Omega_0$.
- **2** Go from any X_0 to Y_0 : $\sigma_0 : X_0 \rightarrow Y_0$
- $o = \sigma_X \cup \sigma_0$ and
 - and ∃ a canonical neighborhood Σ of *σ* such that each sample path in Σ ends up in U₀

ヘロン 人間 とくほ とくほ とう

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Flush Particles Out: 1 particle

Proper projected particle path:

- finite number of straight segments that meet on $\partial \Gamma$
- meet at wall: incoming and outgoing angles are equal
- meet at disk: any angles except $\pm \frac{\pi}{2}$

- There exists a proper projected particle path to an exit if the first collision is non-tangential.
- Can follow a proper projected particle path
- if can set the angular velocities of the disks to appropriate values at appropriate times

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Flush Particles Out: 1 particle

Proper projected particle path:

- finite number of straight segments that meet on $\partial \Gamma$
- meet at wall: incoming and outgoing angles are equal
- meet at disk: any angles except $\pm \frac{\pi}{2}$

- There exists a proper projected particle path to an exit if the first collision is non-tangential.
- Can follow a proper projected particle path
- if can set the angular velocities of the disks to appropriate values at appropriate times

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Flush Particles Out: 1 particle

- Proper projected particle path:
 - finite number of straight segments that meet on $\partial \Gamma$
 - meet at wall: incoming and outgoing angles are equal
 - meet at disk: any angles except $\pm \frac{\pi}{2}$

- There exists a proper projected particle path to an exit if the first collision is non-tangential.
- Can follow a proper projected particle path
- if can set the angular velocities of the disks to appropriate values at appropriate times

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Setting Angular Velocities

Controllability Lemma

ω - angular velocity of D_j ; no particles. Given ω' and time τ, there exists σ on [0, τ] s.t.

- at time τ , D_i has ang. vel. ω' and no particles.
- on [0, τ], all particles follow admissible paths and only hit disks D₁, · · · , D_{j-1} except one collision with D_j.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Setting Angular Velocities

Controllability Lemma

ω - angular velocity of D_j ; no particles. Given ω' and time τ, there exists σ on [0, τ] s.t.

- at time τ , D_j has ang. vel. ω' and no particles.
- on [0, τ], all particles follow admissible paths and only hit disks D₁, · · · , D_{j-1} except one collision with D_j.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

Setting Angular Velocities

Controllability Lemma

ω - angular velocity of D_j ; no particles. Given ω' and time τ, there exists σ on [0, τ] s.t.

- at time τ , D_j has ang. vel. ω' and no particles.
- on [0, τ], all particles follow admissible paths and only hit disks D₁, · · · , D_{j-1} except one collision with D_j.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

1: Flush Particles Out

- The Main Lemma ⇒ can follow any proper projected particle path.
- Many particle system:
 - want to flush each out via a proper projected particle path
 - but might get simultaneous collisions with the same disks.
 - near a proper projected particle path, particle's final positions and velocities depend continuously on its initial positions and velocities.
 - \Rightarrow can arrange so that no simultaneous collisions with same disks occur.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

1: Flush Particles Out

- The Main Lemma => can follow any proper projected particle path.
- Many particle system:
 - want to flush each out via a proper projected particle path
 - but might get simultaneous collisions with the same disks.
 - near a proper projected particle path, particle's final positions and velocities depend continuously on its initial positions and velocities.
 - \Rightarrow can arrange so that no simultaneous collisions with same disks occur.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

1: Flush Particles Out

- The Main Lemma => can follow any proper projected particle path.
- Many particle system:
 - want to flush each out via a proper projected particle path
 - but might get simultaneous collisions with the same disks.
 - near a proper projected particle path, particle's final positions and velocities depend continuously on its initial positions and velocities.
 - \Rightarrow can arrange so that no simultaneous collisions with same disks occur.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

1: Flush Particles Out

- The Main Lemma => can follow any proper projected particle path.
- Many particle system:
 - want to flush each out via a proper projected particle path
 - but might get simultaneous collisions with the same disks.
 - near a proper projected particle path, particle's final positions and velocities depend continuously on its initial positions and velocities.
 - \Rightarrow can arrange so that no simultaneous collisions with same disks occur.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

1: Flush Particles Out

- The Main Lemma ⇒ can follow any proper projected particle path.
- Many particle system:
 - want to flush each out via a proper projected particle path
 - but might get simultaneous collisions with the same disks.
 - near a proper projected particle path, particle's final positions and velocities depend continuously on its initial positions and velocities.
 - \Rightarrow can arrange so that no simultaneous collisions with same disks occur.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

2: From X_0 to Y_0

Lemma

 $X_0, Y_0 \in \Omega_0$:

- $X_0: (\varphi_1, \omega_1), \cdots, (\varphi_N, \omega_N)$
- $Y_0: (\varphi'_1, \omega'_1), \cdots, (\varphi'_N, \omega'_N)$

Given time T, there exists a sample path $\sigma_0 : X_0 \rightarrow Y_0$ such that all particles follow admissible paths.

• Proof: application of the Main Lemma 2N times.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

2: From X_0 to Y_0

Lemma

 $X_0, Y_0 \in \Omega_0$:

- $X_0: (\varphi_1, \omega_1), \cdots, (\varphi_N, \omega_N)$
- $Y_0: (\varphi'_1, \omega'_1), \cdots, (\varphi'_N, \omega'_N)$

Given time T, there exists a sample path $\sigma_0 : X_0 \rightarrow Y_0$ such that all particles follow admissible paths.

• Proof: application of the Main Lemma 2N times.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

3:Canonical Neighborhood of σ

- Near a proper projected particle path, particle's final position and velocity depend continuously on its initial position and velocity and angular velocities of the disks it collides with.
- The position and velocity of an injected particle depends continuously on the injections parameters.
- If in *σ* : *X* → *Y*₀ all particles follow admissible paths,
 ∃ a canonical neighborhood Σ of *σ* s.t. each sample path in Σ ends in *U*₀.

Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

3:Canonical Neighborhood of σ

- Near a proper projected particle path, particle's final position and velocity depend continuously on its initial position and velocity and angular velocities of the disks it collides with.
- The position and velocity of an injected particle depends continuously on the injections parameters.
- If in *σ* : *X* → *Y*₀ all particles follow admissible paths,
 ∃ a canonical neighborhood Σ of *σ* s.t. each sample path in Σ ends in *U*₀.
Results Intermediate Propositions and Proof of Theorem Proofs of Propositions

3:Canonical Neighborhood of σ

- Near a proper projected particle path, particle's final position and velocity depend continuously on its initial position and velocity and angular velocities of the disks it collides with.
- The position and velocity of an injected particle depends continuously on the injections parameters.
- If in *σ* : *X* → *Y*₀ all particles follow admissible paths,
 ∃ a canonical neighborhood Σ of *σ* s.t. each sample path in Σ ends in *U*₀.

イロト イポト イヨト イヨト

 Settings
 Results

 Chain of Disks in a Rectangle Other Geometries
 Intermediate Propositions and Proof of Theorem

Conclusion

We have shown:

イロト イポト イヨト イヨト

Settings Results Chain of Disks in a Rectangle Intermediate Propositions and Proof of Theorem Other Geometries Proofs of Propositions

Conclusion

We have shown:

Can generalize to systems with similar geometries, e.g.

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions

Other Geometries

• The Theorem applies to systems with other geometries with only slight modifications.

• Things to check:

- Can flush particles out: proper projected particle path from any point on any disk to an exit.
- Controllability Lemma applies: proper projected particle path from an opening to a disk that meets that disk radially

< ∃ > <

Other Geometries

- The Theorem applies to systems with other geometries with only slight modifications.
- Things to check:
 - Can flush particles out:
 - proper projected particle path from any point on any disk to an exit.
 - Controllability Lemma applies: proper projected particle path from an opening to a disk that meets that disk radially

< ∃ > <

Image: A matrix

Other Geometries

- The Theorem applies to systems with other geometries with only slight modifications.
- Things to check:
 - Can flush particles out: proper projected particle path from any point on any disk to an exit.
 - Controllability Lemma applies: proper projected particle path from an opening to a disk that meets that disk radially

< ∃ > <

Other Geometries

- The Theorem applies to systems with other geometries with only slight modifications.
- Things to check:
 - Can flush particles out: proper projected particle path from any point on any disk to an exit.
 - Controllability Lemma applies: proper projected particle path from an opening to a disk that meets that disk radially

< ∃ > <

Other Geometries

- The Theorem applies to systems with other geometries with only slight modifications.
- Things to check:
 - Can flush particles out: proper projected particle path from any point on any disk to an exit.
 - Controllability Lemma applies: proper projected particle path from an opening to a disk that meets that disk radially

3 ×

A D b 4 A b

Chains and Lattices of Illuminated Cells

< ∃ > <

Chains and Lattices of Illuminated Cells

Tatiana Yarmola Ergodicity of some open systems with particle-disk interactions

Illuminated Cells

(a) an illuminated cell (b) an illuminated cell

Figure: Illumination Property

< 🗇 🕨

.⊒...>

- P. Balint, K. K. Lin, and L.-S. Young: Ergodicity and Energy Distributions for Some Boundary Driven Intergrable Hamiltonian Chains. Comm. Math. Phys. 294(1), 199-228 (2010).
- J.-P. Eckmann and P. Jacquet: Controllability for Chains of Dynamical Scatterers. Nonlinearity 20(1), 1601-1617 (2007)
- J.-P. Eckmann and L.-S. Young: Nonequillibrium Energy Profiles for a Class of 1-d Models. Comm. Math. Phys. 201, 237-267 (2006)
- R. Klages, G. Nicolis, and K. Rateitschak: Thermostating by deterministic scattering: the periodic Lorentz gas. J. Stat. Phys. 99, 1339-1364 (2000)
- Larralde, Leyvraz, and Mejía-Monasterio: Transport properties in a modified Lorentz gas. J. Stat. Phys. 113, 197-231 (2003)
- K.K. Lin and L.-S. Young: Nonequillibrium Steady States for Certain Hamiltonian Models. To appear in J. Stat. Phys.

イロト イポト イヨト イヨト